login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012299
Expansion of e.g.f. arcsinh(sin(x)*sin(x)), even-indexed terms only.
1
0, 2, -8, -88, 6592, -9568, -49063808, 4426189952, 1122968737792, -441081682390528, -23926396899780608, 74405808039377364992, -16597462789247237931008, -19016633437725878038847488
OFFSET
0,2
LINKS
Vaclav Kotesovec, graph a(n) / asymptotic.
FORMULA
Lim sup n->oo (|a(n)|*n^(3/2)/(2*n)!)^(1/(2*n)) = 1.04762030856875... = 1/sqrt(arcsin(sqrt(1-1/sqrt(2)))^2 + (log(1+sqrt(2)-sqrt(2*(1+sqrt(2))))/2)^2). - Vaclav Kotesovec, Nov 02 2013
EXAMPLE
E.g.f. = 2*x^2/2! - 8*x^4/4! - 88*x^6/6! + 6592x^8/8! + ...
MATHEMATICA
Table[n!*SeriesCoefficient[ArcSinh[Sin[x]*Sin[x]], {x, 0, n}], {n, 0, 40, 2}] (* Vaclav Kotesovec, Nov 02 2013 *)
PROG
(PARI) x='x+O('x^50); v=Vec(serlaplace(asinh(sin(x)^2))); concat([0], vector(#v\2, n, v[2*n-1])) \\ G. C. Greubel, Oct 25 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Argsinh(Sin(x)^2) )); [0] cat [Factorial(2*n+2)*b[2*n+1]: n in [0..Floor((m-4)/2)]]; // G. C. Greubel, Oct 25 2018
CROSSREFS
Sequence in context: A136749 A226321 A054955 * A012295 A009486 A110384
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Missing a(0)=0 prepended by Vaclav Kotesovec, Nov 02 2013
STATUS
approved