login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012262
Expansion of e.g.f. exp(arctanh(arcsinh(x))).
1
1, 1, 1, 2, 5, 24, 109, 552, 3177, 28032, 227961, 1778688, 15773229, 212383872, 2521786149, 25215328512, 294715261521, 5734229114880, 91106569198449, 1029078328135680, 14283819393505749, 410202091438571520
OFFSET
0,4
COMMENTS
a(32) is negative. - Vaclav Kotesovec, Oct 25 2013
LINKS
FORMULA
a(n) ~ 8*n^(n-1)*(2*sin(Pi*n/2)-Pi*cos(Pi*n/2))/((4+Pi^2)^(3/2)*exp(n)). - Vaclav Kotesovec, Oct 25 2013
EXAMPLE
E.g.f. = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 24*x^5/5! + ...
MAPLE
seq(coeff(series(factorial(n)*exp(arctanh(arcsinh(x))), x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 29 2018
MATHEMATICA
CoefficientList[Series[Exp[ArcTanh[ArcSinh[x]]], {x, 0, 35}], x]* Range[0, 35]! (* Vaclav Kotesovec, Oct 25 2013 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(exp(atanh(asinh(x))))) \\ G. C. Greubel, Oct 28 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Argtanh(Argsinh(x))) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Oct 28 2018
CROSSREFS
Sequence in context: A200402 A010365 A218939 * A012254 A322897 A284230
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved