login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A012261
Expansion of e.g.f. exp(arctanh(sinh(x))).
3
1, 1, 1, 4, 13, 76, 421, 3424, 26713, 277456, 2794441, 35345344, 436186213, 6504742336, 95033434861, 1632531979264, 27555582190513, 535821754153216, 10260037095841681, 222769351470429184, 4771143086720391613
OFFSET
0,4
LINKS
FORMULA
E.g.f.: sqrt( (1 + sinh(x)) / (1 - sinh(x)) ).
a(n) ~ 2^(3/4) * n^n / (exp(n) * arcsinh(1)^(n+1/2)). - Vaclav Kotesovec, Oct 25 2013
From Michael Somos, May 05 2017: (Start)
E.g.f y(x) satisfies 0 = (1 + y^2) * (3 + y^2) + 4*y*y''*(1 + 2*y^2) + 4*y'*y'*(1 - 6*y^2).
a(2*n) = A012109(n).
E.g.f. y(x) satisfies y(-x) = 1/y(x).
(End)
EXAMPLE
G.f. = 1 + x + x^2 + 4*x^3 + 13*x^4 + 76*x^5 + 421*x^6 + 3424*x^7 + ...
E.g.f. = 1 + 1*x1/1! + 1*x^2/2! + 4*x^3/3! + 13*x^4/4! + 76*x^5/5! + ...
MAPLE
seq(coeff(series(factorial(n)*exp(arctanh(sinh(x))), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 29 2018
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[ArcTanh[Sinh[x]]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jul 24 2012 *)
a[ n_] := If[n < 0, 0, n! SeriesCoefficient[ Sqrt[-1 + 2/(1 - Sinh[x])], {x, 0, n}]]; (* Michael Somos, May 05 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( sqrt(-1 + 2 / (1 - sinh(x + x * O(x^n)))), n))}; /* Michael Somos, May 05 2017 */
(PARI) x='x+O('x^30); Vec(serlaplace(exp(atanh(sinh(x))))) \\ G. C. Greubel, Oct 28 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Argtanh(Sinh(x))) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Oct 28 2018
CROSSREFS
Cf. A012109.
Sequence in context: A144055 A012150 A362572 * A012075 A197942 A337286
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Definition clarified by Harvey P. Dale, Jul 24 2012
STATUS
approved