login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011924
Floor[n(n-1)(n-2)(n-3)/14].
2
0, 0, 0, 0, 1, 8, 25, 60, 120, 216, 360, 565, 848, 1225, 1716, 2340, 3120, 4080, 5245, 6644, 8305, 10260, 12540, 15180, 18216, 21685, 25628, 30085, 35100, 40716, 46980, 53940, 61645, 70148, 79501, 89760
OFFSET
0,6
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1, 0, 0, 1, -4, 6, -4, 1).
FORMULA
a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +a(n-7) -4*a(n-8) +6*a(n-9) -4*a(n-10) +a(n-11). G.f.: x^4*(x^6+4*x^5-x^4+4*x^3-x^2+4*x+1) / ((1-x)^5*(x^6+x^5+x^4+x^3+x^2+x+1) ). - R. J. Mathar, Apr 15 2010
MAPLE
seq(floor(n*(n-1)*(n-2)*(n-3)/14), n = 0 .. 100); # Robert Israel, Aug 05 2014
MATHEMATICA
Table[Floor[(n(n-1)(n-2)(n-3))/14], {n, 0, 40}] (* or *) LinearRecurrence[ {4, -6, 4, -1, 0, 0, 1, -4, 6, -4, 1}, {0, 0, 0, 0, 1, 8, 25, 60, 120, 216, 360}, 41] (* Harvey P. Dale, Jul 07 2011 *)
PROG
(PARI) a(n)=floor(n*(n-1)*(n-2)*(n-3)/14) \\ Edward Jiang , Aug 05 2014
(PARI) a(n)=binomial(n, 4)*12\7 \\ Charles R Greathouse IV, May 27 2015
CROSSREFS
Sequence in context: A360201 A004640 A250321 * A370081 A346522 A244834
KEYWORD
nonn,easy
AUTHOR
STATUS
approved