login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011908
a(n) = floor( n*(n-1)*(n-2)/26 ).
2
0, 0, 0, 0, 0, 2, 4, 8, 12, 19, 27, 38, 50, 66, 84, 105, 129, 156, 188, 223, 263, 306, 355, 408, 467, 530, 600, 675, 756, 843, 936, 1037, 1144, 1259, 1380, 1510, 1647, 1793, 1946, 2109, 2280, 2460, 2649, 2847, 3056, 3274, 3503, 3741, 3991, 4251, 4523, 4805, 5100, 5406, 5724, 6054, 6396, 6752, 7120
OFFSET
0,6
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,0,0,0,0,0,0,1,-3,3,-1).
FORMULA
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = +3*a(n-1) -3*a(n-2) +a(n-3) +a(n-13) -3*a(n-14) +3*a(n-15) -a(n-16).
G.f.: x^5*(2-2*x+2*x^2-2*x^3+3*x^4-2*x^5+2*x^6-2*x^7+3*x^8-2*x^9+x^10) / ( (1-x)^3*(1-x^13) ). (End)
MATHEMATICA
Floor[3*Binomial[Range[0, 75], 3]/13] (* G. C. Greubel, Oct 18 2024 *)
PROG
(Magma) [Floor(3*Binomial(n, 3)/13): n in [0..75]]; // G. C. Greubel, Oct 18 2024
(SageMath) [3*binomial(n, 3)//13 for n in range(76)] # G. C. Greubel, Oct 18 2024
CROSSREFS
Cf. A011886.
Sequence in context: A125606 A192078 A136184 * A117455 A277753 A237820
KEYWORD
nonn
EXTENSIONS
More terms added by G. C. Greubel, Oct 18 2024
STATUS
approved