login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011858
a(n) = floor( n*(n-1)/5 ).
7
0, 0, 0, 1, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 48, 54, 61, 68, 76, 84, 92, 101, 110, 120, 130, 140, 151, 162, 174, 186, 198, 211, 224, 238, 252, 266, 281, 296, 312, 328, 344, 361, 378, 396, 414, 432, 451, 470, 490, 510, 530, 551, 572, 594, 616, 638, 661, 684
OFFSET
0,5
COMMENTS
a(n-2) is the total degree of the irreducible factor F(n) of the n-th Somos polynomial. - Michael Somos, Jul 06 2011
FORMULA
G.f.: x^3*(x^2+1)/ ((1-x)^3 * (1+x+x^2+x^3+x^4)). a(n) = +2*a(n-1) -a(n-2) +a(n-5) -2*a(n-6) +a(n-7). - R. J. Mathar, Apr 15 2010
Euler transform of length 5 sequence [2, 1, 0, -1, 1]. - Michael Somos, Jul 04 2011
a(1-n) = a(n). a(n) = a(n-5) + 2*n - 6 for all n in Z. - Michael Somos, Jul 04 2011
a(n) = a(n-1) + a(n-5) - a(n-6) + 2 for all n in Z. - Michael Somos, Jul 06 2011
a(n) = (1/5) * ( n^2 - n + [0,0,-2,-1,-2](mod 5) ). - Ralf Stephan, Aug 11 2013
a(n) - 2*a(n+1) + a(n+2) = (n == 1 (mod 5)) + (n == 3 (mod 5)) for all n in Z. - Michael Somos, Oct 19 2014
a(n) = A130520(n) + A130520(n+2). - R. J. Mathar, Aug 11 2021
Sum_{n>=3} 1/a(n) = 50/9 - sqrt(2*(5+sqrt(5)))*Pi/3 + tan(Pi/(2*sqrt(5)))*Pi/sqrt(5). - Amiram Eldar, Oct 01 2022
EXAMPLE
G.f. = x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + 14*x^9 + 18*x^10 + 22*x^11 + ...
F(5) = y + 1 is of degree a(3) = 1, F(6) = y*z + y + z is of degree a(4) = 2.
MATHEMATICA
a[ n_] := Quotient[ n (n - 1), 5]; (* Michael Somos, Oct 19 2014 *)
PROG
(PARI) {a(n) = n * (n - 1) \ 5}; /* Michael Somos, Jul 04 2011 */
(Magma) [Floor(n*(n-1)/5): n in [0..50]]; // G. C. Greubel, Oct 28 2017
CROSSREFS
Cf. A130520.
Sequence in context: A117490 A359275 A032514 * A183144 A194162 A084627
KEYWORD
nonn,easy
STATUS
approved