login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A011819 M-sequences m_0,m_1,m_2,m_3 with m_1 < n. 6
2, 5, 16, 52, 152, 392, 904, 1899, 3694, 6743, 11672, 19318, 30772, 47426, 71024, 103717, 148122, 207385, 285248, 386120, 515152, 678316, 882488, 1135535, 1446406, 1825227, 2283400, 2833706, 3490412, 4269382, 5188192, 6266249 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

a(n)= ( 2*n^6 +15*n^5 +50*n^4 +165*n^3 +308*n^2 +540*n +720 )/360. [Frank Ellermann]

G.f.: -x*(x^6-7*x^5+19*x^4-25*x^3+23*x^2-9*x+2) / (x-1)^7. - Colin Barker, Feb 15 2014

MATHEMATICA

CoefficientList[Series[(x^6 - 7 x^5 + 19 x^4 -25 x^3 + 23 x^2 - 9 x + 2)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 16 2014 *)

PROG

(PARI) a(n)=n*(2*n^5+15*n^4+50*n^3+165*n^2+308*n+540)/360+2 \\ Charles R Greathouse IV, Dec 08 2011

(PARI) Vec(-x*(x^6-7*x^5+19*x^4-25*x^3+23*x^2-9*x+2)/(x-1)^7 + O(x^100)) \\ Colin Barker, Feb 15 2014

(MAGMA) [n*(2*n^5+15*n^4+50*n^3+165*n^2+308*n+540)/360+2: n in [0..40]]; // Vincenzo Librandi, Feb 16 2014

CROSSREFS

Cf. A011820-A011825, A011827.

Sequence in context: A231357 A303477 A234843 * A148390 A232317 A148391

Adjacent sequences:  A011816 A011817 A011818 * A011820 A011821 A011822

KEYWORD

nonn,easy

AUTHOR

Svante Linusson (linusson(AT)math.kth.se)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 21:16 EDT 2018. Contains 316541 sequences. (Running on oeis4.)