login
A010988
Binomial coefficient C(n,35).
6
1, 36, 666, 8436, 82251, 658008, 4496388, 26978328, 145008513, 708930508, 3190187286, 13340783196, 52251400851, 192928249296, 675248872536, 2250829575120, 7174519270695, 21945588357420, 64617565719070, 183649923622620, 505037289962205, 1346766106565880
OFFSET
35,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (36, -630, 7140, -58905, 376992, -1947792, 8347680, -30260340, 94143280, -254186856, 600805296, -1251677700, 2310789600, -3796297200, 5567902560, -7307872110, 8597496600, -9075135300, 8597496600, -7307872110, 5567902560, -3796297200, 2310789600, -1251677700, 600805296, -254186856, 94143280, -30260340, 8347680, -1947792, 376992, -58905, 7140, -630, 36, -1).
FORMULA
G.f.: x^35/(1-x)^36. - Zerinvary Lajos, Dec 19 2008; adapted to offset by Enxhell Luzhnica, Jan 23 2017
From Amiram Eldar, Dec 12 2020: (Start)
Sum_{n>=35} 1/a(n) = 35/34.
Sum_{n>=35} (-1)^(n+1)/a(n) = A001787(35)*log(2) - A242091(35)/34! = 601295421440*log(2) - 429895798851992810179897/1031453949240 = 0.9736160133... (End)
MAPLE
seq(binomial(n, 35), n=35..55); # Zerinvary Lajos, Dec 19 2008
MATHEMATICA
Table[Binomial[n, 35], {n, 35, 66}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
PROG
(Magma) [Binomial(n, 35): n in [35..70]]; // Vincenzo Librandi, Jun 12 2013
CROSSREFS
KEYWORD
nonn
STATUS
approved