login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010987
Binomial coefficient C(n,34).
6
1, 35, 630, 7770, 73815, 575757, 3838380, 22481940, 118030185, 563921995, 2481256778, 10150595910, 38910617655, 140676848445, 482320623240, 1575580702584, 4923689695575, 14771069086725, 42671977361650, 119032357903550, 321387366339585, 841728816603675
OFFSET
34,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (35, -595, 6545, -52360, 324632, -1623160, 6724520, -23535820, 70607460, -183579396, 417225900, -834451800, 1476337800, -2319959400, 3247943160, -4059928950, 4537567650, -4537567650, 4059928950, -3247943160, 2319959400, -1476337800, 834451800, -417225900, 183579396, -70607460, 23535820, -6724520, 1623160, -324632, 52360, -6545, 595, -35, 1).
FORMULA
G.f.: x^34/(1-x)^35 . - Zerinvary Lajos, Dec 19 2008; adapted to offset by Enxhell Luzhnica, Jan 23 2017
From Amiram Eldar, Dec 12 2020: (Start)
Sum_{n>=34} 1/a(n) = 34/33.
Sum_{n>=34} (-1)^n/a(n) = A001787(34)*log(2) - A242091(34)/33! = 292057776128*log(2) - 429895798850931019349797/2123581660200 = 0.9728992064... (End)
MAPLE
seq(binomial(n, 34), n=34..55); # Zerinvary Lajos, Dec 19 2008
MATHEMATICA
Table[Binomial[n, 34], {n, 34, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
PROG
(Magma) [Binomial(n, 34): n in [34..70]]; // Vincenzo Librandi, Jun 12 2013
(PARI) x='x+O('x^50); Vec(x^34/(1-x)^35) \\ G. C. Greubel, Nov 23 2017
CROSSREFS
KEYWORD
nonn
STATUS
approved