login
A010821
Expansion of Product_{k>=1} (1 - x^k)^14.
3
1, -14, 77, -182, 0, 924, -1547, -506, 3003, 0, -1729, -8372, 9177, 13090, -15625, 0, -17017, 10556, 30107, 0, 7084, -89206, 11571, 69160, 0, 27132, 0, -19096, -153502, 0, 93093, 165242, 0, -38962, 0, -420838, 257439
OFFSET
0,2
REFERENCES
Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
LINKS
FORMULA
a(0) = 1, a(n) = -(14/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-14*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
EXAMPLE
1 - 14*x + 77*x^2 - 182*x^3 + 924*x^5 - 1547*x^6 - 506*x^7 + ...
MATHEMATICA
CoefficientList[Series[Product[(1-x^k)^14, {k, 40}], {x, 0, 40}], x] (* Harvey P. Dale, Sep 03 2022 *)
CROSSREFS
Sequence in context: A200547 A240045 A280396 * A022706 A269495 A085462
KEYWORD
sign
AUTHOR
STATUS
approved