%I #34 Sep 08 2022 08:44:37
%S 0,1,4,7,9,10,16,18,19,25,28,31,33,36,39,40,45,49,51,63,64,66,67,69,
%T 70,72,76,78,81,82,87,90
%N Squares mod 93.
%e x^2 = 10 mod 93 has x = 14, 17, 76, 79 for solutions, hence 10 is in the sequence.
%e x^2 = 11 mod 93 has no solutions, hence 11 is not in the sequence.
%t Union[PowerMod[Range[93], 2, 93]] (* _Alonso del Arte_, Mar 31 2017 *)
%o (Sage) [quadratic_residues(93)] # _Zerinvary Lajos_, May 28 2009
%o (PARI) for (n=0, 92, if (issquare(Mod(n, 93)), print1(n, ", "))) \\ _Michel Marcus_, Apr 01 2017
%o (Scala) (1 to 93).map(n => n * n % 93).toSet.toSeq.sorted // _Alonso del Arte_, Dec 31 2019
%o (Magma) [n: n in [0..92] | IsSquare(R! n) where R:= ResidueClassRing(93)]; // _Vincenzo Librandi_, Jan 01 2020
%Y Cf. A028806, A096008 (row 93).
%K nonn,fini,full,easy
%O 1,3
%A _N. J. A. Sloane_