login
A010454
Squares mod 93.
1
0, 1, 4, 7, 9, 10, 16, 18, 19, 25, 28, 31, 33, 36, 39, 40, 45, 49, 51, 63, 64, 66, 67, 69, 70, 72, 76, 78, 81, 82, 87, 90
OFFSET
1,3
EXAMPLE
x^2 = 10 mod 93 has x = 14, 17, 76, 79 for solutions, hence 10 is in the sequence.
x^2 = 11 mod 93 has no solutions, hence 11 is not in the sequence.
MATHEMATICA
Union[PowerMod[Range[93], 2, 93]] (* Alonso del Arte, Mar 31 2017 *)
PROG
(Sage) [quadratic_residues(93)] # Zerinvary Lajos, May 28 2009
(PARI) for (n=0, 92, if (issquare(Mod(n, 93)), print1(n, ", "))) \\ Michel Marcus, Apr 01 2017
(Scala) (1 to 93).map(n => n * n % 93).toSet.toSeq.sorted // Alonso del Arte, Dec 31 2019
(Magma) [n: n in [0..92] | IsSquare(R! n) where R:= ResidueClassRing(93)]; // Vincenzo Librandi, Jan 01 2020
CROSSREFS
Cf. A028806, A096008 (row 93).
Sequence in context: A310940 A342839 A153001 * A272015 A310941 A310942
KEYWORD
nonn,fini,full,easy
STATUS
approved