Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Nov 12 2023 05:59:16
%S 4,1,2,4,2,1,8,1,2,4,2,1,8,1,2,4,2,1,8,1,2,4,2,1,8,1,2,4,2,1,8,1,2,4,
%T 2,1,8,1,2,4,2,1,8,1,2,4,2,1,8,1,2,4,2,1,8,1,2,4,2,1,8,1,2,4,2,1,8,1,
%U 2,4,2,1,8,1,2,4,2,1,8,1,2
%N Continued fraction for sqrt(22).
%H Harry J. Smith, <a href="/A010126/b010126.txt">Table of n, a(n) for n = 0..20000</a>
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>.
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1).
%F From _Amiram Eldar_, Nov 12 2023: (Start)
%F Multiplicative with a(2^e) = 2, a(3^e) = 4, and a(p^e) = 1 for p >= 5.
%F Dirichlet g.f.: zeta(s) * (1 + 1/2^s) * (1 + 1/3^(s-1)). (End)
%e 4.690415759823429554565630113... = 4 + 1/(1 + 1/(2 + 1/(4 + 1/(2 + ...)))). - _Harry J. Smith_, Jun 03 2009
%t ContinuedFraction[Sqrt[22],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 05 2011 *)
%t PadRight[{4},120,{8,1,2,4,2,1}] (* _Harvey P. Dale_, Jul 02 2019 *)
%o (PARI) { allocatemem(932245000); default(realprecision, 18000); x=contfrac(sqrt(22)); for (n=0, 20000, write("b010126.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 03 2009
%Y Cf. A041034/A041035 (convergents), A248250 (Egyptian fraction), A010478 (decimal expansion).
%K nonn,cofr,easy,mult
%O 0,1
%A _N. J. A. Sloane_