login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010126
Continued fraction for sqrt(22).
3
4, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2, 4, 2, 1, 8, 1, 2
OFFSET
0,1
FORMULA
From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2^e) = 2, a(3^e) = 4, and a(p^e) = 1 for p >= 5.
Dirichlet g.f.: zeta(s) * (1 + 1/2^s) * (1 + 1/3^(s-1)). (End)
EXAMPLE
4.690415759823429554565630113... = 4 + 1/(1 + 1/(2 + 1/(4 + 1/(2 + ...)))). - Harry J. Smith, Jun 03 2009
MATHEMATICA
ContinuedFraction[Sqrt[22], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
PadRight[{4}, 120, {8, 1, 2, 4, 2, 1}] (* Harvey P. Dale, Jul 02 2019 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 18000); x=contfrac(sqrt(22)); for (n=0, 20000, write("b010126.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009
CROSSREFS
Cf. A041034/A041035 (convergents), A248250 (Egyptian fraction), A010478 (decimal expansion).
Sequence in context: A178141 A063987 A236269 * A021712 A307550 A309443
KEYWORD
nonn,cofr,easy,mult
STATUS
approved