login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010012
a(0) = 1, a(n) = 22*n^2 + 2 for n>0.
1
1, 24, 90, 200, 354, 552, 794, 1080, 1410, 1784, 2202, 2664, 3170, 3720, 4314, 4952, 5634, 6360, 7130, 7944, 8802, 9704, 10650, 11640, 12674, 13752, 14874, 16040, 17250, 18504, 19802, 21144, 22530, 23960, 25434, 26952, 28514, 30120, 31770, 33464, 35202, 36984
OFFSET
0,2
COMMENTS
From Bruno Berselli, Feb 06 2012: (Start)
First trisection of A008259.
Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=2, s=3. After 1, all terms are in A000408. (End)
FORMULA
G.f.: (1+x)*(1+20*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*22+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(11)/44*Pi*coth( Pi/sqrt(11)) = 1.0706480516966... - R. J. Mathar, May 07 2024
a(n) = A069173(n)+A069173(n+1). - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 22 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {24, 90, 200}, 50]] (* Harvey P. Dale, Jul 20 2013 *)
CoefficientList[Series[(1 + x) (1 + 20 x + x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 03 2015 *)
PROG
(Magma) [1] cat [22*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
CROSSREFS
Cf. A206399.
Sequence in context: A211632 A305888 A233644 * A256718 A233637 A179962
KEYWORD
nonn,easy
AUTHOR
STATUS
approved