login
A008259
Coordination sequence T2 for Moganite, also for BGB1.
2
1, 4, 11, 24, 41, 62, 90, 122, 157, 200, 247, 296, 354, 416, 479, 552, 629, 706, 794, 886, 977, 1080, 1187, 1292, 1410, 1532, 1651, 1784, 1921, 2054, 2202, 2354, 2501, 2664, 2831, 2992, 3170, 3352, 3527, 3720, 3917, 4106, 4314, 4526, 4729, 4952, 5179, 5396
OFFSET
0,2
REFERENCES
Inorganic Crystal Structure Database: Collection Code 67669 (for Moganite)
LINKS
R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.
D. M. Teter, G.V. Gibbs, M. B. Boisen, D.C. Allan, and M. P. Teter, First principles study of several hypothetical silica framework structures, Physical Review B, 52 (1995), pp. 8064-8073.
FORMULA
a(3m) = 22m^2+2, a(3m+1) = 22m^2+15m+4, a(3m+2)=22m^2+29m+11. - N. J. A. Sloane
G.f.: -(x+1)*(x^6+2*x^5+5*x^4+6*x^3+5*x^2+2*x+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Dec 12 2012
MATHEMATICA
CoefficientList[Series[-(x + 1) (x^6 + 2 x^5 + 5 x^4 + 6 x^3 + 5 x^2 + 2 x + 1)/((x - 1)^3 (x^2 + x + 1)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 15 2013 *)
LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 4, 11, 24, 41, 62, 90, 122}, 70] (* Harvey P. Dale, May 10 2024 *)
CROSSREFS
Sequence in context: A099456 A008069 A047950 * A008079 A301045 A008090
KEYWORD
nonn,easy
AUTHOR
Ralf W. Grosse-Kunstleve, David M. Teter (dmteter(AT)sandia.gov)
STATUS
approved