%I #22 Jan 31 2018 03:18:21
%S 0,2,-4,-42,888,-8086,-115468,8863806,-275344656,2488177106,
%T 369676840940,-34139482063962,1691837365047912,-16526563632072646,
%U -7669129653528552220,1088114395890103645710,-87525176659638470236704
%N Expansion of e.g.f. sinh(sin(x)) * sin(x) (even powers only).
%H G. C. Greubel, <a href="/A009591/b009591.txt">Table of n, a(n) for n = 0..250</a>
%F a(n) = 2*Sum_{j=1..n} 4^(n-j)/(2*j-1)!*Sum_{i=0..j-1} (i-j)^(2*n)* binomial(2*j,i)*(-1)^(n+j-i). - _Vladimir Kruchinin_, Jun 09 2011
%t With[{nn=40},Take[CoefficientList[Series[Sinh[Sin[x]]Sin[x],{x,0,nn}],x]Range[0,nn]!,{1,-1,2}]] (* _Harvey P. Dale_, Dec 08 2012 *)
%o (Maxima)
%o a(n):=2*sum(4^(n-j)/(2*j-1)!*sum((i-j)^(2*n)*binomial(2*j,i)*(-1)^(n+j-i),i,0,j-1),j,1,n); /* _Vladimir Kruchinin_, Jun 09 2011 */
%o (PARI) x='x+O('x^40); v=Vec(serlaplace(sinh(sin(x))*sin(x))); concat([0], vector(#v\2 ,n,v[2*n-1])) \\ _G. C. Greubel_, Jan 30 2018
%K sign
%O 0,2
%A _R. H. Hardin_
%E Extended with signs by _Olivier GĂ©rard_, Mar 15 1997