login
A009591
Expansion of e.g.f. sinh(sin(x)) * sin(x) (even powers only).
2
0, 2, -4, -42, 888, -8086, -115468, 8863806, -275344656, 2488177106, 369676840940, -34139482063962, 1691837365047912, -16526563632072646, -7669129653528552220, 1088114395890103645710, -87525176659638470236704
OFFSET
0,2
LINKS
FORMULA
a(n) = 2*Sum_{j=1..n} 4^(n-j)/(2*j-1)!*Sum_{i=0..j-1} (i-j)^(2*n)* binomial(2*j,i)*(-1)^(n+j-i). - Vladimir Kruchinin, Jun 09 2011
MATHEMATICA
With[{nn=40}, Take[CoefficientList[Series[Sinh[Sin[x]]Sin[x], {x, 0, nn}], x]Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Dec 08 2012 *)
PROG
(Maxima)
a(n):=2*sum(4^(n-j)/(2*j-1)!*sum((i-j)^(2*n)*binomial(2*j, i)*(-1)^(n+j-i), i, 0, j-1), j, 1, n); /* Vladimir Kruchinin, Jun 09 2011 */
(PARI) x='x+O('x^40); v=Vec(serlaplace(sinh(sin(x))*sin(x))); concat([0], vector(#v\2 , n, v[2*n-1])) \\ G. C. Greubel, Jan 30 2018
CROSSREFS
Sequence in context: A215921 A009811 A364237 * A009717 A018317 A359876
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved