login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2*n+1)!.
36

%I #74 Jan 02 2025 12:45:13

%S 1,6,120,5040,362880,39916800,6227020800,1307674368000,

%T 355687428096000,121645100408832000,51090942171709440000,

%U 25852016738884976640000,15511210043330985984000000,10888869450418352160768000000,8841761993739701954543616000000,8222838654177922817725562880000000

%N a(n) = (2*n+1)!.

%C Denominators in the expansion of sin(x):

%C sin(x) = x - x^3/3! + x^5/5! - x^7/7! + x^9/9! - ...

%C Denominators in the expansion of sinc(x) = sin(x)/x:

%C sinc x = sin(x)/x = 1 - x^2/3! + x^4/5! - x^6/7! + x^8/9! - ... - _Daniel Forgues_, Oct 20 2011

%C The terms of this sequence are the denominators of sinh(x) = (e^x-e^(-x))/2 = x + x^3/3! + x^5/5! + x^7/7! + .... - _Mohammad K. Azarian_, Jan 19 2012

%D H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, p. 88.

%D Isaac Newton, De analysi, 1669; reprinted in D. Whiteside, ed., The Mathematical Works of Isaac Newton, vol. 1, Johnson Reprint Co., 1964; see p. 20.

%D Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 32, equation 32:6:2 at page 301.

%H Vincenzo Librandi, <a href="/A009445/b009445.txt">Table of n, a(n) for n = 0..200</a>

%H I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., <a href="http://arxiv.org/abs/1408.2021">Enumeration of idempotents in diagram semigroups and algebras</a>, arXiv preprint arXiv:1408.2021 [math.GR], 2014.

%H W. Dunham, <a href="http://www.jstor.org/stable/30037380">Touring the calculus gallery</a>, Amer. Math. Monthly, 112 (2005), 1-19.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HyperbolicSine.html">Hyperbolic Sine</a>.

%F a(n) = A014481(n) * A001147(n). - _Reinhard Zumkeller_, Dec 03 2011

%F Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / (1 - 4*x)^(3/2). - _Ilya Gutkovskiy_, Jul 11 2021

%e G.f. = 1 + 6*x + 120*x^2 + 5040*x^3 + 362880*x^4 + 39916800*x^5 + ...

%t Array[(2 # + 1)! &, 15] (* _Robert G. Wilson v_, Aug 08 2018 *)

%o (Sage) [stirling_number1(2*i,1) for i in range(1,22)] # _Zerinvary Lajos_, Jun 27 2008

%o (PARI) a(n)=(n+n+1)! \\ _Charles R Greathouse IV_, Oct 20 2011

%o (Magma) [Factorial(2*n+1): n in [0..20]]; // _Vincenzo Librandi_, Oct 21 2011

%o (Haskell)

%o a009445 n = product [1..2*n+1] -- _Reinhard Zumkeller_, Dec 03 2011

%o (Sage)

%o T = taylor(sin(x^2), x, 0, 70)

%o [(-1)^n/T.coefficient(x,4*n+2) for n in (0..15)] # _Peter Luschny_, Dec 14 2012

%Y Cf. A000142, A001147, A010050, A014481.

%K nonn,easy,changed

%O 0,2

%A _R. H. Hardin_, Joe Keane (jgk(AT)jgk.org)