login
A008501
7-dimensional centered tetrahedral numbers.
2
1, 9, 45, 165, 495, 1287, 3003, 6435, 12869, 24301, 43713, 75417, 125475, 202203, 316767, 483879, 722601, 1057265, 1518517, 2144493, 2982135, 4088655, 5533155, 7398411, 9782829, 12802581, 16593929
OFFSET
0,2
COMMENTS
If X is an n-set and Y a fixed 8-subset of X then a(n-8) is equal to the number of 8-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
LINKS
FORMULA
G.f.: (1-x^8)/(1-x)^9 = (1+x)*(1+x^2)*(1+x^4)/(1-x)^8.
1260*a(n) = (2*n+1)*(n^6 + 3*n^5 + 100*n^4 + 195*n^3 + 1159*n^2 + 1062*n + 1260). - R. J. Mathar, Mar 14 2011
MAPLE
seq(binomial(n+8, 8) - binomial(n, 8), n=0..30); # G. C. Greubel, Nov 09 2019
MATHEMATICA
Table[Binomial[n + 8, 8] - Binomial[n, 8], {n, 0, 26}] (* Bruno Berselli, Mar 22 2012 *)
PROG
(Magma) [((2*n+1)*(n^6+3*n^5 +100*n^4 +195*n^3 +1159*n^2 +1062*n +1260)/1260) : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
(PARI) vector(31, n, b=binomial; b(n+7, 8) - b(n-1, 8) ) \\ G. C. Greubel, Nov 09 2019
(Sage) b=binomial; [b(n+8, 8) - b(n, 8) for n in (0..30)] # G. C. Greubel, Nov 09 2019
(GAP) B:=Binomial;; List([0..30], n-> B(n+8, 8)-B(n, 8) ); # G. C. Greubel, Nov 09 2019
CROSSREFS
Sequence in context: A162602 A247609 A341138 * A341206 A306942 A289354
KEYWORD
nonn,easy
STATUS
approved