OFFSET
0,10
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,2,-2,0,0,0,-1,1).
FORMULA
From R. J. Mathar, Apr 16 2010: (Start)
a(n)= a(n-1) + 2*a(n-5) - 2*a(n-6) - a(n-10) + a(n-11).
G.f.: x^5*(1+x^4)/ ((x^4+x^3+x^2+x+1)^2 * (1-x)^3). (End)
MAPLE
seq( mul(floor((n+j)/5), j=0..1), n=0..55); # G. C. Greubel, Nov 08 2019
MATHEMATICA
Times@@@Partition[Floor[Range[0, 60]/5], 2, 1] (* or *) LinearRecurrence[ {1, 0, 0, 0, 2, -2, 0, 0, 0, -1, 1}, {0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4}, 60] (* Harvey P. Dale, Feb 01 2015 *)
Product[Floor[(Range[55] +j-1)/5], {j, 0, 1}] (* G. C. Greubel, Nov 08 2019 *)
PROG
(PARI) a(n) = (n\5)*((n+1)\5); \\ Michel Marcus, Jan 06 2017
(PARI) vector(56, n, prod(j=0, 1, (n+j-1)\5) ) \\ G. C. Greubel, Nov 08 2019
(Magma) [&*[Floor((n+j)/5): j in [0..1]]: n in [0..55]]; // G. C. Greubel, Nov 08 2019
(Sage) [product(floor((n+j)/5) for j in (0..1)) for n in (0..55)] # G. C. Greubel, Nov 08 2019
(GAP) List([0..55], n-> Int(n/5)*Int((n+1)/5) ); # G. C. Greubel, Nov 08 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved