OFFSET
0,4
COMMENTS
James Gregory calculated the first eight rows of this table (with some numerical errors) in 1671. See Roy, p. 299. - Peter Bala, Sep 06 2016
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..990
William Y. C. Chen and Amy M. Fu, The Dumont Ansatz for the Eulerian Polynomials, Peak Polynomials and Derivative Polynomials, arXiv:2204.01497 [math.CO], 2022.
M.-P. Grosset and A. P. Veselov, Bernoulli numbers and solitons, arXiv:math/0503175 [math.GM], 2005.
Gordon Haigh, A "natural" approach to Pick's theorem, Math. Gaz. 64 (1980), no. 429, 173-180.
Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688.
Shi-Mei Ma, Qi Fang, Toufik Mansour, and Yeong-Nan Yeh, Alternating Eulerian polynomials and left peak polynomials, arXiv:2104.09374, 2021
R. Roy, The Discovery of the Series Formula for Pi by Leibniz, Gregory and Nilakantha, Mathematics Magazine Vol. 63, No. 5 (Dec., 1990), 291-306.
M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 2019, Vol. 11, No. 1, 24-33.
FORMULA
T(0, k) = delta(1, k), T(n, k) = (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1).
EXAMPLE
From Peter Bala, Sep 06 2016: (Start)
Table begins
1
1 1
2 2
2 8 6
16 40 24
16 136 240 120
272 1232 1680 720
272 3968 12096 13440 5040
...
D(tan(x)) = 1 + tan(x)^2.
D^2(tan(x)) = 2*tan(x) + 2*tan(x)^3.
D^3(tan(x)) = 2 + 8*tan(x)^2 + 6*tan(x)^4.
D^4(tan(x)) = 16*tan(x) + 40*tan(x)^3 + 24*tan(x)^5. (End)
MATHEMATICA
row[n_] := CoefficientList[ D[Tan[x], {x, n}] /. Tan -> Identity /. Sec -> Function[Sqrt[1 + #^2]], x] // DeleteCases[#, 0]&; Table[row[n], {n, 0, 10}] // Flatten // Prepend[#, 1] & (* Jean-François Alcover, Apr 05 2013 *)
T[ n_, k_] := If[n<1, Boole[n==0 && k==1], (k-1)*T[n-1, k-1] + (k+1)*T[n-1, k+1]]; (* Michael Somos, Jul 08 2024 *)
PROG
(PARI) {T(n, k) = if(n<1, n==0 && k==1, (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1))}; /* Michael Somos, Jul 08 2024 */
CROSSREFS
KEYWORD
nonn,tabf,easy,nice
AUTHOR
STATUS
approved