The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007729 6th binary partition function. 4
 1, 2, 4, 5, 8, 10, 13, 14, 18, 21, 26, 28, 33, 36, 40, 41, 46, 50, 57, 60, 68, 73, 80, 82, 89, 94, 102, 105, 112, 116, 121, 122, 128, 133, 142, 146, 157, 164, 174, 177, 188, 196, 209, 214, 226, 233, 242, 244, 253, 260, 272, 277, 290, 298, 309, 312, 322, 329, 340, 344 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Gary W. Adamson, Aug 31 2016: (Start) The sequence is the left-shifted vector of the production matrix M, with lim_{k->infinity} M^k. M = 1, 0, 0, 0, 0, ... 2, 0, 0, 0, 0, ... 2, 1, 0, 0, 0, ... 1, 2, 0, 0, 0, ... 0, 2, 1, 0, 0, ... 0, 1, 2, 0, 0, ... 0, 0, 2, 1, 0, ... 0, 0, 1, 2, 0, ... ... The sequence is equal to the product of its aerated variant by (1,2,2,1): (1, 2, 2, 1) * (1, 0, 2, 0, 4, 0, 5, 0, 8, ...) = (1, 2, 4, 5, 8, 10, ...). Term a((2^n) - 1) = A007051: (1, 2, 5, 14, 41, 122, ...). (End) a(n) is the number of ways to represent 2n (or 2n+1) as a sum e_0 + 2*e_1 + ... + (2^k)*e_k with each e_i in {0,1,2,3,4,5}. - Michael J. Collins, Dec 25 2018 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 Michael J. Collins, David Wilson, Equivalence of OEIS A007729 and A174868, arXiv:1812.11174 [math.CO], 2018. B. Reznick, Some binary partition functions, in "Analytic number theory" (Conf. in honor P. T. Bateman, Allerton Park, IL, 1989), 451-477, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990. FORMULA G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = (1 + 2x + 2x^2 + x^3 + 0 + 0 + 0 + ...). - Gary W. Adamson, Sep 01 2016 a(2k) = 2*a(k-1) + a(k); a(2k+1) = 2*a(k) + a(k-1). - Michael J. Collins, Dec 25 2018 MAPLE b:= proc(n) option remember; `if`(n<2, n, `if`(irem(n, 2)=0, b(n/2), b((n-1)/2) +b((n+1)/2))) end: a:= proc(n) option remember; b(n+1) +`if`(n>0, a(n-1), 0) end: seq(a(n), n=0..70); # Alois P. Heinz, Jun 21 2012 MATHEMATICA b[n_] := b[n] = If[n<2, n, If[Mod[n, 2] == 0, b[n/2], b[(n-1)/2]+b[(n+1)/2]]]; a[n_] := a[n] = b[n+1] + If[n>0, a[n-1], 0]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *) CROSSREFS A column of A072170. Cf. A002487, A007051. Apart from an initial zero, coincides with A174868. Sequence in context: A179509 A157007 A173509 * A174868 A268381 A186349 Adjacent sequences: A007726 A007727 A007728 * A007730 A007731 A007732 KEYWORD nonn AUTHOR EXTENSIONS More terms from Vladeta Jovovic, May 06 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 23:46 EST 2022. Contains 358544 sequences. (Running on oeis4.)