login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Shifts left under XOR-convolution with itself.
(Formerly M1274)
5

%I M1274 #30 Oct 07 2017 00:09:00

%S 0,1,2,4,14,38,118,338,1006,2990,8974,26862,80510,241390,723934,

%T 2171046,6512910,19536974,58608782,175821710,527470318,1582385678,

%U 4747139342,14241362318,42724100334,128172182990,384516408110,1153548740206,3460645850030,10381936700110

%N Shifts left under XOR-convolution with itself.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A007462/b007462.txt">Table of n, a(n) for n = 0..1000</a>

%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

%F a(n) ~ c * 3^n, where c = 0.151273188266276362886260408769663538575624024971525940842364624... . - _Vaclav Kotesovec_, Sep 10 2014

%p with(Bits):

%p a:= proc(n) option remember;

%p `if`(n<2, n, add(Xor(a(i), a(n-1-i)), i=0..n-1))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jun 22 2012

%t a[0]=0; a[1]=1; a[n_] := a[n] = Sum[BitXor[a[k], a[n-k-1]], {k, 0, n-1}]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Sep 07 2012, after _Alois P. Heinz_ *)

%o (Haskell)

%o import Data.Bits (xor)

%o a007462 n = a007462_list !! n

%o a007462_list = 0 : 1 : f [1,0] where

%o f xs = y : f (y : xs) where

%o y = sum $ zipWith xor xs $ reverse xs :: Integer

%o -- _Reinhard Zumkeller_, Jul 15 2012

%Y Cf. A192484, A199770.

%K nonn,nice,eigen

%O 0,3

%A _N. J. A. Sloane_