login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007462
Shifts left under XOR-convolution with itself.
(Formerly M1274)
5
0, 1, 2, 4, 14, 38, 118, 338, 1006, 2990, 8974, 26862, 80510, 241390, 723934, 2171046, 6512910, 19536974, 58608782, 175821710, 527470318, 1582385678, 4747139342, 14241362318, 42724100334, 128172182990, 384516408110, 1153548740206, 3460645850030, 10381936700110
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
FORMULA
a(n) ~ c * 3^n, where c = 0.151273188266276362886260408769663538575624024971525940842364624... . - Vaclav Kotesovec, Sep 10 2014
MAPLE
with(Bits):
a:= proc(n) option remember;
`if`(n<2, n, add(Xor(a(i), a(n-1-i)), i=0..n-1))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 22 2012
MATHEMATICA
a[0]=0; a[1]=1; a[n_] := a[n] = Sum[BitXor[a[k], a[n-k-1]], {k, 0, n-1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Sep 07 2012, after Alois P. Heinz *)
PROG
(Haskell)
import Data.Bits (xor)
a007462 n = a007462_list !! n
a007462_list = 0 : 1 : f [1, 0] where
f xs = y : f (y : xs) where
y = sum $ zipWith xor xs $ reverse xs :: Integer
-- Reinhard Zumkeller, Jul 15 2012
CROSSREFS
Sequence in context: A135960 A216630 A006611 * A053623 A035010 A349450
KEYWORD
nonn,nice,eigen
STATUS
approved