login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007175
Number of simplicial 4-clusters with n cells.
(Formerly M2762)
4
1, 1, 1, 3, 8, 40, 211, 1406, 9754, 71591, 537699, 4131943, 32271490, 255690412, 2050376883, 16616721067, 135920429975, 1120999363012, 9313779465810, 77897862860818, 655433405297407, 5544948758579214, 47143948331898873, 402655164736641843, 3453509765971944236, 29734988097830504532
OFFSET
1,4
COMMENTS
Hering article has error in the 20th term. - Robert A. Russell, Apr 20 2012
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. Hering et al., The enumeration of stack polytopes and simplicial clusters, Discrete Math., 40 (1982), 203-217.
MATHEMATICA
Table[Binomial[4 n, n]/(12 (3 n + 1) (3 n + 2)) +
If[EvenQ[n],
Binomial[2 n, n/2]/(8 (3 n/2 + 1)) +
Binomial[2 n - 1, n/2 - 1]/((3 n/2 + 1)),
Binomial[2 n - 1, n/2 - 1/2]/(2 (3 n/2 + 1/2))] +
Switch[Mod[n, 3], 0, Binomial[4 n/3, n/3]/(3 (n + 1)), 1,
2 Binomial[4 n/3 - 1/3, n/3 - 1/3]/(3 (n + 1)), 2,
Binomial[4 n/3 - 2/3, n/3 - 2/3]/(n + 1)] +
If[2 == Mod[n, 4], Binomial[n - 1, n/4 - 1/2]/(2 (3 n/4 + 1/2)), 0] +
If[1 == Mod[n, 5], 2 Binomial[4 n/5 - 4/5, n/5 - 1/5]/(5 (3 n/5 + 2/5)),
0], {n, 1, 30}] (* Robert A. Russell, Apr 20 2012 *)
CROSSREFS
Sequence in context: A262126 A110561 A107991 * A152394 A168468 A330527
KEYWORD
nonn,easy
EXTENSIONS
More terms from Robert A. Russell, Apr 20 2012
STATUS
approved