Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4099 #38 Jul 09 2022 11:04:48
%S 1,0,0,6,-12,40,180,-1512,11760,-38880,20160,2106720,-22381920,
%T 173197440,-703999296,-1737489600,86030380800,-1149696737280,
%U 11455162974720,-89560399541760,636617260339200,-6318191386644480,139398889956480000,-3797936822885990400
%N Expansion of e.g.f. ( (1+x)^x )^x.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Seiichi Manyama, <a href="/A007121/b007121.txt">Table of n, a(n) for n = 0..452</a>
%F a(n) = n!*Sum_{k=0..floor(n/3)} Stirling1(n-2*k,k)/(n-2*k)!. - _Vladimir Kruchinin_, Dec 13 2011
%F a(0) = 1; a(n) = -(n-1)! * Sum_{k=3..n} (-1)^k * k/(k-2) * a(n-k)/(n-k)!. - _Seiichi Manyama_, Jul 09 2022
%p A007121 := proc(n)
%p n!*coeftayl( (1+x)^(x^2),x=0,n) ;
%p end proc:
%p seq(A007121(n),n=0..40) ; # _R. J. Mathar_, Dec 15 2011
%t With[{nn=30},CoefficientList[Series[((1+x)^x)^x,{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Aug 24 2014 *)
%o (Maxima)
%o a(n):=sum(stirling1(n-2*k, k)/(n-2*k)!, k, 0, n/3); /* Vladimir Kruchinin, Dec 13 2011 */
%o (PARI) a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 1)/(n-2*k)!); \\ _Seiichi Manyama_, Jul 09 2022
%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-(i-1)!*sum(j=3, i, (-1)^j*j/(j-2)*v[i-j+1]/(i-j)!)); v; \\ _Seiichi Manyama_, Jul 09 2022
%Y Cf. A240989.
%K sign
%O 0,4
%A _Simon Plouffe_
%E Signs added by _R. J. Mathar_, _Vladimir Kruchinin_, Dec 15 2011