

A006692


Number of connected nstate finite automata with 3 inputs.
(Formerly M5298)


4



49, 6877, 1854545, 807478656, 514798204147, 451182323794896, 519961864703259753, 762210147961330421167, 1384945048774500147047194, 3055115321627096660341307614, 8043516699726480852467167758419, 24915939138210507189761922944830006
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Is this sequence essentially the same as A304313?  Paul D. Hanna, May 11 2018


REFERENCES

Robert W. Robinson, Counting strongly connected finite automata, pages 671685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 48, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. LesniakFoster], D. R. Lick and C. E. Wall. A WileyInterscience Publication. John Wiley & Sons, Inc., New York, 1985. xv+810 pp. ISBN: 0471816353; Math Review MR0812651 (86g:05026).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Hugo Pfoertner, Table of n, a(n) for n = 1..30
R. W. Robinson, Counting strongly connected finite automata, pages 671685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 48, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. LesniakFoster], D. R. Lick and C. E. Wall. A WileyInterscience Publication. John Wiley & Sons, Inc., New York, 1985. xv+810 pp. ISBN: 0471816353; Math Review MR0812651. (86g:05026). [Annotated scanned copy, with permission of the author.]


CROSSREFS

Cf. A027834, A006691, A304313.
Sequence in context: A075416 A127861 A130416 * A304313 A283788 A206247
Adjacent sequences: A006689 A006690 A006691 * A006693 A006694 A006695


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Extended using the PARI program by Paul D. Hanna in A027834 by Hugo Pfoertner, May 22 2018


STATUS

approved



