|
|
A006371
|
|
Number of reduced binary quadratic forms of discriminant -n.
(Formerly M0207)
|
|
2
|
|
|
1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 3, 2, 2, 2, 3, 3, 2, 3, 4, 2, 1, 4, 5, 4, 2, 2, 4, 4, 3, 4, 5, 4, 1, 4, 7, 3, 3, 4, 5, 6, 3, 4, 6, 2, 2, 6, 8, 6, 3, 3, 5, 6, 3, 6, 8, 4, 2, 6, 10, 4, 2, 6, 5, 7, 5, 4, 8, 4, 3, 8, 10, 8, 3, 2, 7, 6, 4, 8, 10, 6, 1, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,6
|
|
REFERENCES
|
H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 5th edition, 1982, p. 144.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=3..84.
Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
|
|
CROSSREFS
|
Cf. A006374.
Sequence in context: A182597 A290491 A194314 * A000177 A319815 A222656
Adjacent sequences: A006368 A006369 A006370 * A006372 A006373 A006374
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Sean A. Irvine, Mar 19 2017
|
|
STATUS
|
approved
|
|
|
|