login
A006185
Number of pair-coverings with largest block size 3.
(Formerly M3266)
3
1, 4, 6, 7, 7, 12, 12, 19, 21, 26, 26, 35, 35, 46, 48, 57, 57, 70, 70, 85, 87, 100, 100, 117, 117, 136, 138, 155, 155, 176, 176, 199, 201, 222, 222, 247, 247, 274, 276, 301, 301, 330, 330, 361, 363, 392, 392, 425, 425, 460, 462, 495, 495, 532
OFFSET
3,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. G. Stanton, J. L. Allston and D. D. Cowan, Pair-coverings with restricted largest block length, Ars Combin., 11 (1981), 85-98.
M. J. Grannell, T. S. Griggs, K. A. S. Quinn, R. G. Stanton, A census of minimum pair-coverings with restricted largest block length, Ars Combin., 52 (1999).
LINKS
R. G. Stanton, J. L. Allston and D. D. Cowan, Pair-coverings with restricted largest block length, Ars Combin., 11 (1981), 85-98. (Annotated scanned copy)
FORMULA
a(n) = n*(n-1)/6 if n == 1 or 3 (mod 6), a(n) = n*(n+1)/6 if n == 0 or 2 (mod 6), a(n) = (n^2+n+4)/6 if n == 4 (mod 6), and a(n) = (n^2-n+16)/6 if n == 5 (mod 6). [From Grannell et al.] - Sean A. Irvine, Jan 17 2017
G.f.: -x^3*(1 + 3*x + x^2 - 2*x^3 + 4*x^5 - x^7 - 2*x^4 - x^6 + x^8) / ( (x^2-x+1)*(1+x+x^2)*(1+x)^2*(x-1)^3 ). - R. J. Mathar, Jan 26 2017
MATHEMATICA
LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {1, 4, 6, 7, 7, 12, 12, 19, 21}, 100] (* Vincenzo Librandi, Jan 27 2017 *)
PROG
(Magma) I:=[1, 4, 6, 7, 7, 12, 12, 19, 21]; [n le 9 select I[n] else Self(n-1)+Self(n-2)-Self(n-3)+Self(n-6)-Self(n-7)-Self(n-8)+Self(n-9): n in [1..60]]; // Vincenzo Librandi, Jan 27 2017
CROSSREFS
Sequence in context: A266148 A011275 A205684 * A169788 A369802 A300707
KEYWORD
nonn,easy
STATUS
approved