login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Gaussian binomial coefficient [ 2n,n ] for q=3.
(Formerly M3715)
1

%I M3715 #30 Sep 08 2022 08:44:34

%S 1,4,130,33880,75913222,1506472167928,267598665689058580,

%T 427028776969176679964080,6129263888495201102915629695046,

%U 791614563787525746761491781638123230424,920094266641283414155073889843358388073398779900

%N Gaussian binomial coefficient [ 2n,n ] for q=3.

%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

%H T. D. Noe, <a href="/A006103/b006103.txt">Table of n, a(n) for n = 0..25</a>

%H M. Sved, <a href="/A006095/a006095.pdf">Gaussians and binomials</a>, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)

%F a(n) = Sum_{k=0..n} 3^(k^2)*(A022167(n,k))^2. - _Werner Schulte_, Mar 09 2019

%t Table[QBinomial[2n, n, 3], {n, 0, 10}] (* _Vladimir Reshetnikov_, Sep 12 2016 *)

%o (PARI) q=3; {a(n) = prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1))) };

%o vector(15, n, n--; a(n)) \\ _G. C. Greubel_, Mar 09 2019

%o (Magma) q:=3; [n le 0 select 1 else (&*[(1-q^(2*n-j))/(1-q^(j+1)): j in [0..n-1]]): n in [0..15]]; // _G. C. Greubel_, Mar 09 2019

%o (Sage) [gaussian_binomial(2*n,n,3) for n in (0..15)] # _G. C. Greubel_, Mar 09 2019

%Y Cf. A022167.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_