login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006103
Gaussian binomial coefficient [ 2n,n ] for q=3.
(Formerly M3715)
1
1, 4, 130, 33880, 75913222, 1506472167928, 267598665689058580, 427028776969176679964080, 6129263888495201102915629695046, 791614563787525746761491781638123230424, 920094266641283414155073889843358388073398779900
OFFSET
0,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
a(n) = Sum_{k=0..n} 3^(k^2)*(A022167(n,k))^2. - Werner Schulte, Mar 09 2019
MATHEMATICA
Table[QBinomial[2n, n, 3], {n, 0, 10}] (* Vladimir Reshetnikov, Sep 12 2016 *)
PROG
(PARI) q=3; {a(n) = prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1))) };
vector(15, n, n--; a(n)) \\ G. C. Greubel, Mar 09 2019
(Magma) q:=3; [n le 0 select 1 else (&*[(1-q^(2*n-j))/(1-q^(j+1)): j in [0..n-1]]): n in [0..15]]; // G. C. Greubel, Mar 09 2019
(Sage) [gaussian_binomial(2*n, n, 3) for n in (0..15)] # G. C. Greubel, Mar 09 2019
CROSSREFS
Cf. A022167.
Sequence in context: A096759 A299367 A299931 * A209012 A376870 A003371
KEYWORD
nonn,easy
STATUS
approved