OFFSET
0,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..25
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
a(n) = Sum_{k=0..n} 3^(k^2)*(A022167(n,k))^2. - Werner Schulte, Mar 09 2019
MATHEMATICA
Table[QBinomial[2n, n, 3], {n, 0, 10}] (* Vladimir Reshetnikov, Sep 12 2016 *)
PROG
(PARI) q=3; {a(n) = prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1))) };
vector(15, n, n--; a(n)) \\ G. C. Greubel, Mar 09 2019
(Magma) q:=3; [n le 0 select 1 else (&*[(1-q^(2*n-j))/(1-q^(j+1)): j in [0..n-1]]): n in [0..15]]; // G. C. Greubel, Mar 09 2019
(Sage) [gaussian_binomial(2*n, n, 3) for n in (0..15)] # G. C. Greubel, Mar 09 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved