login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sprague-Grundy (or Nim) values for the game of Maundy cake on an n X 1 sheet.
(Formerly M2219)
12

%I M2219 #152 Aug 02 2024 06:26:28

%S 0,1,1,3,1,4,1,7,4,6,1,10,1,8,6,15,1,13,1,16,8,12,1,22,6,14,13,22,1,

%T 21,1,31,12,18,8,31,1,20,14,36,1,29,1,34,21,24,1,46,8,31,18,40,1,40,

%U 12,50,20,30,1,51,1,32,29,63,14,45,1,52,24,43,1,67,1,38,31,58,12,53,1

%N Sprague-Grundy (or Nim) values for the game of Maundy cake on an n X 1 sheet.

%C There are three equivalent formulas for a(n). Suppose n >= 2, and let p1 <= p2 <= ... <= pk be the prime factors of n, with repetition.

%C Theorem 1: a(1) = 0. For n >= 2, a(n) = n*s(n), where

%C s(n) = 1/p1 + 1/(p1*p2) + 1/(p1*p2*p3) + ... + 1/(p1*p2*...*pk).

%C This is implicit in Berlekamp, Conway and Guy, Winning Ways, 2 vols., 1982, pp. 28, 53.

%C Note that s(n) = A322034(n) / A322035(n).

%C _David James Sycamore_ observed on Nov 24 2018 that Theorem 1 implies a(n) < n for all n (see comments in A322034), and also leads to a simple recurrence for a(n):

%C Theorem 2: a(1) = 0. For n >= 2, a(n) = p*a(n/p) + 1, where p is the largest prime factor of n.

%C Proof. (Th. 1 implies Th. 2) If n is a prime, Theorem 1 gives a(n) = 1 = n*a(1)+1. For a nonprime n, let n = m*p where p is the largest prime factor of n and m >= 2. From Theorem 1, a(m) = m*s(m), a(n) = q*m*(s(m) + 1/n) = q*a(m) + 1.

%C (Th. 2 implies Th. 1) The reverse implication is equally easy.

%C Theorem 2 is equivalent to the following more complicated recurrence:

%C Theorem 3: a(1) = 0. For n >= 2, a(n) = max_{p|n, p prime} (p*a(n/p)+1).

%D E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 28, 53.

%D E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Second Edition, Vol. 1, A K Peters, 2001, pp. 27, 51.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Reinhard Zumkeller, <a href="/A006022/b006022.txt">Table of n, a(n) for n = 1..10000</a>

%H Jonathan Blanchette and Robert Laganière, <a href="https://arxiv.org/abs/1910.11749">A Curious Link Between Prime Numbers, the Maundy Cake Problem and Parallel Sorting</a>, arXiv:1910.11749 [cs.DS], 2019.

%F a(n) = n * Sum_{k=1..N} (1/(p1^m1*p2^m2*...*pk^mk)) * (pk^mk-1)/(pk-1) for n>=2, where pk is the k-th distinct prime factor of n, N is the number of distinct prime factors of n, and mk is the multiplicity of pk occurring in n. To prove this, expand the factors in Theorem 1 and use the geometrical series identity. - _Jonathan Blanchette_, Nov 01 2019

%F From _Antti Karttunen_, Apr 12 2020: (Start)

%F a(n) = A322382(n) + A333791(n).

%F a(n) = A332993(n) - n = A001065(n) - A333783(n). (End)

%F a(n) = Sum_{k=1..bigomega(n)} F^k(n), where F^k(n) is the k-th iterate of F(n) = A032742(n). - _Ridouane Oudra_, Jan 26 2024

%e For n=24, s(24) = 1/2 + 1/4 + 1/8 + 1/24 = 11/12, so a(24) = 24*11/12 = 22.

%p P:=proc(n) local FM: FM:=ifactors(n)[2]: seq(seq(FM[j][1], k=1..FM[j][2]), j=1..nops(FM)) end: # A027746

%p s:=proc(n) local i,t,b; global P;t:=0; b:=1; for i in [P(n)] do b:=b*i; t:=t+1/b; od; t; end; # A322034/A322035

%p A006022 := n -> if n = 1 then 0 else n*s(n); fi;

%p # _N. J. A. Sloane_, Nov 28 2018

%t Nest[Function[{a, n}, Append[a, Max@ Map[# a[[n/#]] + 1 &, Rest@ Divisors@ n]]] @@ {#, Length@ # + 1} &, {0, 1}, 77] (* _Michael De Vlieger_, Nov 23 2018 *)

%o (Haskell)

%o a006022 1 = 0

%o a006022 n = (+ 1) $ sum $ takeWhile (> 1) $

%o iterate (\x -> x `div` a020639 x) (a032742 n)

%o -- _Reinhard Zumkeller_, Jun 03 2012

%o (PARI) lista(nn) = {my(v = vector(nn)); for (n=1, nn, if (n>1, my(m = 0); fordiv (n, d, if (d>1, m = max(m, d*v[n/d]+1))); v[n] = m;); print1(v[n], ", "););} \\ _Michel Marcus_, Nov 25 2018

%Y Cf. A020639, A032742, A001348, A002182, A008864.

%Y Cf. also A027746, A306264, A306363, A322034, A322035, A322036, A322382, A328898, A333783, A332993, A333791.

%Y Row sums of A328969.

%K nonn

%O 1,4

%A _N. J. A. Sloane_

%E Edited and extended by _Christian G. Bower_, Oct 18 2002

%E Entry revised by _N. J. A. Sloane_, Nov 28 2018