Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1838 #115 Sep 08 2022 08:44:34
%S 1,0,0,2,8,22,52,114,240,494,1004,2026,4072,8166,16356,32738,65504,
%T 131038,262108,524250,1048536,2097110,4194260,8388562,16777168,
%U 33554382,67108812,134217674,268435400,536870854,1073741764,2147483586
%N Second-order Eulerian numbers: a(n) = 2^n - 2*n.
%C Starting with n=2, a(n) is the second-order Eulerian number <<n-1,1>> (see A008517).
%C Also, number of 3 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1), (01;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in same relative order as those in the triple (x,y,z). - _Sergey Kitaev_, Nov 11 2004
%C This is the number of target DNA sequences of the correct length present after each successive cycle of the Polymerase Chain Reaction (PCR). The first two cycles produce 0 target sequences, there are 2 target sequences present after the third cycle, then 8 after the fourth cycle, and so forth. - _A. Timothy Royappa_, Jun 16 2012
%C a(n+2) = the row sums of A222403. - _J. M. Bergot_, Apr 04 2018
%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A005803/b005803.txt">Table of n, a(n) for n=0..500</a>
%H S. Bilotta, E. Grazzini, and E. Pergola, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Grazzini/graz3.html">Enumeration of Two Particular Sets of Minimal Permutations</a>, J. Int. Seq. 18 (2015) 15.10.2.
%H I. Gessel and R. P. Stanley, <a href="https://doi.org/10.1016/0097-3165(78)90042-0">Stirling polynomials</a>, J. Combin. Theory, A 24 (1978), 24-33.
%H Jim Haglund and Mirko Visontai, <a href="http://hans.math.upenn.edu/~jhaglund/preprints/es-final.pdf">Stable multivariate Eulerian polynomials and generalized Stirling permutations</a>.
%H Sergey Kitaev, <a href="http://www.emis.de/journals/INTEGERS/papers/e21/e21.Abstract.html">On multi-avoidance of right angled numbered polyomino patterns</a>, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
%H Sergey Kitaev, <a href="https://web.archive.org/web/20130625171839/http://www.ms.uky.edu/~math/MAreport/4-ser.ps">On multi-avoidance of right angled numbered polyomino patterns</a>, University of Kentucky Research Reports (2004).
%H Sandi Klavžar, Uroš Milutinović and Ciril Petr, <a href="http://dx.doi.org/10.1016/j.exmath.2005.05.003">Hanoi graphs and some classical numbers</a>, Expo. Math. 23 (2005), no. 4, 371-378.
%H James McClung, <a href="https://web.wpi.edu/Pubs/E-project/Available/E-project-051620-220950/unrestricted/Constructions_and_Applications_of_W-States.pdf">Constructions and Applications of W-States</a>, Bachelor Thesis, Worcester Polytechnic Institute (2020).
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.
%H Sam Spiro, <a href="https://arxiv.org/abs/1810.00993">Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic</a>, arXiv preprint arXiv:1810.00993 [math.CO], 2018 (A000246); Discrete Math, 343 (2020), article 111869.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2).
%F G.f.: 1 + 2*x^3/((1-x)^2*(1-2*x)). a(n) = A008517(n-1, 2). - _Michael Somos_, Oct 13 2002
%F Equals binomial transform of [1, -1, 1, 1, 1, ...]. - _Gary W. Adamson_, Jul 14 2008
%F a(0) = 1 and a(n) = Sum_{k=0..n-3} ((-1)^(n+k+1)*binomial(2*n-1,k)*stirling1(2*n-k-3,n-k-2)), n=>1. - _Johannes W. Meijer_, Oct 16 2009
%F a(0)=1, a(1)=0, a(2)=0, a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - _Harvey P. Dale_, May 21 2011
%F a(n) = A000225(n+1) - A081494(n+1), n > 1. In other words, a(n) equals the sum of the elements in a Pascal triangle of depth n+1 minus the sum of the elements on its perimeter. - _Ivan N. Ianakiev_, Jun 01 2014
%F a(n) = A165900(n-1) + Sum_{i=0..n-1} a(i), for n > 0. - _Ivan N. Ianakiev_, Nov 24 2014
%F a(n) = A000225(n) - A005408(n-1). - _Miquel Cerda_, Nov 25 2016
%F E.g.f.: exp(x)*(exp(x) - 2*x). - _Ilya Gutkovskiy_, Nov 25 2016
%e G.f. = 1 + 2*x^3 + 8*x^4 + 22*x^5 + 52*x^6 + 114*x^7 + 240*x^8 + 494*x^9 + ...
%p A005803:=-2*z/(2*z-1)/(z-1)**2; # conjectured by _Simon Plouffe_ in his 1992 dissertation. Gives sequence except for three leading terms
%t Table[2^n-2n,{n,0,50}] (* or *) LinearRecurrence[{4,-5,2},{1,0,0},51] (* _Harvey P. Dale_, May 21 2011 *)
%o (PARI) {a(n) = if( n<0, 0, 2^n - 2*n)}; /* _Michael Somos_, Oct 13 2002 */
%o (Haskell)
%o a005803 n = 2 ^ n - 2 * n
%o a005803_list = 1 : f 1 [0, 2 ..] where
%o f x (z:zs@(z':_)) = y : f y zs where y = (x + z) * 2 - z'
%o -- _Reinhard Zumkeller_, Jan 19 2014
%o (Magma) [2^n-2*n: n in [0..30]]; // _Wesley Ivan Hurt_, Jun 04 2014
%Y Equivalent to second column of A008517.
%Y a(n) = A070313 + 1 = A052515 + 2. Bisection of A077866.
%Y Equals for n =>3 the third right hand column of A163936.
%Y Cf. A000918 (first differences).
%Y Cf. A000079, A000325, A005843, A130102.
%K nonn,easy,nice
%O 0,4
%A _N. J. A. Sloane_, _Simon Plouffe_