login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004046
Theta series of extremal 3-modular even 24-dimensional lattice with minimal norm 6 and det = 3^12.
5
1, 0, 0, 26208, 530712, 6368544, 47331648, 256864608, 1116087336, 4092877152, 12996075456, 37058557536, 96952754808, 232778774592, 526258264896, 1128148021728, 2286143305992, 4451523096384, 8386247967552, 15130902687264, 26614339616592, 45684687301344
OFFSET
0,4
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 729 (t/i)^12 f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 21 2015
REFERENCES
N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
G. Nebe and N. J. A. Sloane, Home page for lattice
H.-G. Quebbemann, Modular lattices in Euclidean spaces, J. Number Theory, 54 (1995), 190-202.
N. J. A. Sloane, Seven Staggering Sequences.
FORMULA
Theta series = a^12 - 9/2*a^8*b^4 + 414*a^6*b^6 + 1458*a^4*b^8 + 1998*a^2*b^10 + 459/2*b^12 (see PARI code for details).
G.f.: (27*a(x)^12 - 72*a(x)^9*b(x)^3 + 64*a(x)^6*b(x)^6 + 16*a(x)^3*b(x)^9 - 8*b(x)^12) / 27 where a(), b() are cubic AGM theta functions, - Michael Somos, Dec 25 2015
EXAMPLE
G.f. = 1 + 26208*x^3 + 530712*x^4 + 6368544*x^5 + 47331648*x^6 + ...
G.f. = 1 + 26208*q^6 + 530712*q^8 + 6368544*q^10 + 47331648*q^12 + ...
MATHEMATICA
a[ n_] := With[ {U1 = QPochhammer[ q]^3, U3 = QPochhammer[ q^3]^3, U9 = QPochhammer[ q^9]^3}, With[ {z = ( 1 + 9 q U9/U1)^3}, SeriesCoefficient[ (U1^3/U3)^4 (27 z^4 - 72 z^3 + 64 z^2 + 16 z - 8) / 27, {q, 0, n}]]]; (* Michael Somos, Dec 25 2015 *)
PROG
(PARI) th3 = sum(n=1, noo\2, 2*x^(4*n^2), 1+A);
th4 = sum(n=1, noo\2, (-1)^n*2*x^(4*n^2), 1+A);
th2 = sum(n=0, noo\2, 2*x^(4*n^2+4*n+1), A);
chk("th3^4 == th4^4+th2^4");
/* A004016(x^4) */
phi0 = th2*subst(th2, x, x^3)+ th3*subst(th3, x, x^3);
/* 2*x*A033762(x^2) */
phi1 = th2*subst(th3, x, x^3)+ th3*subst(th2, x, x^3);
/* A004010(x^2) */
K_12 = phi0^6+45*phi0^2*phi1^4+18*phi1^6;
a=phi0; b=phi1;
A004046=a^12-9/2*a^8*b^4+414*a^6*b^6+1458*a^4*b^8+1998*a^2*b^10+459/2*b^12;
(Magma) A := Basis( ModularForms( Gamma1(3), 12), 22); A[1] + 26208*A[4] + 530712*A[5]; /* Michael Somos, Dec 21 2015 */
(PARI) {a(n) = my(A, U1, U3, U9, z); if( n<0, 0, A = x * O(x^n); U1 = eta(x + A)^3; U3 = eta(x^3 + A)^3; U9 = eta(x^9 + A)^3; z = (1 + 9 * x * U9/U1)^3; polcoeff( (U1^3/U3)^4 * (27*z^4 - 72*z^3 + 64*z^2 + 16*z - 8) / 27, n))}; /* Michael Somos, Dec 25 2015 */
CROSSREFS
Cf. A107657.
Sequence in context: A235900 A245787 A034622 * A031652 A236787 A237003
KEYWORD
nonn
EXTENSIONS
PARI code from Michael Somos, Jun 07 2005
STATUS
approved