login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Theta series of body-centered cubic (b.c.c.) lattice.
(Formerly M4473)
8

%I M4473 #57 Sep 08 2022 08:44:32

%S 1,0,0,8,6,0,0,0,12,0,0,24,8,0,0,0,6,0,0,24,24,0,0,0,24,0,0,32,0,0,0,

%T 0,12,0,0,48,30,0,0,0,24,0,0,24,24,0,0,0,8,0,0,48,24,0,0,0,48,0,0,72,

%U 0,0,0,0,6,0,0,24,48,0,0,0,36,0,0,56,24,0,0,0,24,0,0,72,48,0,0,0,24,0,0

%N Theta series of body-centered cubic (b.c.c.) lattice.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C The bcc lattice is also called the coweight lattice A^*_3 (or D^*_3), dual to the root lattice A_3 (or D_3, or the fcc lattice), or the permutohedral lattice A^*_3. - _Andrey Zabolotskiy_, Mar 08 2020

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 116.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H John Cannon, <a href="/A004013/b004013.txt">Table of n, a(n) for n = 0..10000</a>

%H S. Ahlgren, <a href="http://dx.doi.org/10.1090/S0002-9939-99-05181-3">The sixth, eighth, ninth and tenth powers of Ramanujan's theta function</a>, Proc. Amer. Math. Soc., 128 (1999), 1333-1338; F_4(q).

%H R. J. Mathar, <a href="http://arxiv.org/abs/1309.3705">Hierarchical Subdivision of the Simple Cubic Lattice</a>, arXiv preprint arXiv:1309.3705 [math.MG], 2013.

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Ds3.html">Home page for this lattice</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ThetaSeries.html">Theta Series</a>

%H <a href="/index/Ba#bcc">Index entries for sequences related to b.c.c. lattice</a>

%F subs(q=q^2, ph)^3+(2*sqrt(q))^3*subs(q=q^4, ps)^3, where ps = A010054 = Sum_{k=0..infinity} q^(k*(k+1)/2), ph = A000122 = Sum_{k=-infinity, infinity} q^(k^2).

%F Expansion of phi(q^4)^3 + 8 * q^3 * psi(q^8)^3 in powers of q where phi(), psi() are Ramanujan theta functions. - _Michael Somos_, Oct 25 2006

%F a(4*n + 1) = a(4*n + 2) = a(8*n + 7) = 0. a(4*n) = A005875(n).

%F Expansion of theta_3(q)^3 + theta_2(q)^3 in powers of q^(1/4).

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A004015.

%F a(8*n) = A004015(n). a(8*n + 3) = 8 * A008443(n). a(8*n + 4) = 2 * A045826(n). - _Michael Somos_, Jul 19 2015

%F a(12*n + 4) = 6 * A213056(n). a(16*n + 4) = 6 * A045834(n). a(16*n + 8) = 12 * A045828(n).

%e G.f. = 1 + 8*x^3 + 6*x^4 + 12*x^8 + 24*x^11 + 8*x^12 + 6*x^16 + 24*x^19 + 24*x^20 + ...

%e G.f. = 1 + 8*q^(3/2) + 6*q^2 + 12*q^4 + 24*q^(11/2) + 8*q^6 + 6*q^8 + 24*q^(19/2) + 24*q^10 + 24*q^12 + 32*q^(27/2) + ...

%p M:=100; M1:=M*(M+1)/2; ph:=series(add(q^(k^2),k=-M..M),q,M1): ps:=series(add(q^(k*(k+1)/2),k=0..M),q,M1): t1:=series(subs(q=q^2, ph)^3, q,M1): t2:=series((2*sqrt(q))^3*subs(q=q^4, ps)^3,q,M1): t3:=seriestolist(series(subs(q=q^2,t1+t2),q,M1)): for n from 0 to nops(t3)-1 do lprint(n,t3[n+1]); od:

%t m = 13; m1 = m*((m + 1)/2); ph[q_] = Series[ Sum[ q^k^2, {k, -m, m}], {q, 0, m1}]; ps[q_] = Series[ Sum[ q^(k*((k + 1)/2)), {k, 0, m}], {q, 0, m1}]; t1[q_] = Normal[ Series[ ph[q^2]^3, {q, 0, m1}]]; t2[q_] = Normal[ Series[ (2*Sqrt[q])^3*ps[q^4]^3, {q, 0, m1}]]; CoefficientList[ Series[ t1[q^2] + t2[q^2], {q, 0, m1}], q] (* _Jean-François Alcover_, Dec 20 2011, translated from Maple *)

%t (* From version 6 on *) terms=91; f[q_] = LatticeData["BodyCenteredCubic", "ThetaSeriesFunction"][-I Log[q]/Pi]; CoefficientList[Simplify[f[q] + O[q]^terms, q>0], q][[1 ;; terms]] (* _Jean-François Alcover_, May 15 2013, updated Jul 08 2017 *)

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^4]^3 + EllipticTheta[ 2, 0, x^4]^3, {x, 0, n}]; (* _Michael Somos_, May 24 2013 *)

%o (PARI) {a(n) = if( n<0, 0, if( n%4==0, n/=4; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x * O(x^n))^3, n), n%8==3, n\=8; 8*polcoeff( sum(k=0, (sqrtint(8*n+1) - 1)\2, x^((k^2 + k)/2), x * O(x^n))^3, n)))}; /* _Michael Somos_, Oct 25 2006 */

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A)^5 / eta(x^4 + A)^2 / eta(x^16 + A)^2)^3 + (2 * x * eta(x^16 + A)^2 / eta(x^8 + A))^3, n))}; /* _Michael Somos_, May 17 2008 */

%o (Magma) Basis( ModularForms( Gamma0(8), 3/2), 90) [1]; /* _Michael Somos_, Sep 04 2014 */

%Y Cf. A004015, A005875, A008443, A045826, A045828, A045834, A213056.

%Y Indices of nonzero terms are A004014.

%Y Cf. A023916-A023936.

%Y Cf. A004011, A008422, A008425, A008423, A008427, A008424, A008426.

%K nonn,easy,nice

%O 0,4

%A _N. J. A. Sloane_