The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003830 Order of universal Chevalley group D_n (3). 13
 2, 576, 12130560, 19808719257600, 2579025599882610278400, 27051378802435080953011843891200, 22941271269626791484963824552883153534976000, 1574947942338058195342953134725345263180893951172280320000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985, p. xvi. H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131. LINKS Robert Israel, Table of n, a(n) for n = 1..32 Robert Steinberg, Lectures on Chevalley Groups, Dept. of Mathematics, Yale University, 1967, pp. 130-131. FORMULA a(n) = D(3,n) where D(q,n) = q^(n*(n-1)) * (q^n-1) * Product_{k=1..n-1}(q^(2*k)-1). - Sean A. Irvine, Sep 17 2015 MAPLE f:= n -> 3^(n*(n-1))*(3^n-1)*mul(3^(2*k)-1, k=1..n-1): map(f, [\$1..10]); # Robert Israel, Sep 22 2015 MATHEMATICA f[m_, n_] := m^(n (n - 1)) (m^n - 1) Product[m^(2 k) - 1, {k, n - 1}]; f[3, #] & /@ Range@ 8 (* Michael De Vlieger, Sep 17 2015 *) PROG (PARI) a(n, q=3) = q^(n*(n-1)) * (q^n-1) * prod(k=1, n-1, q^(2*k)-1); \\ Michel Marcus, Sep 17 2015 CROSSREFS Sequence in context: A159529 A195001 A163277 * A134371 A306635 A212840 Adjacent sequences:  A003827 A003828 A003829 * A003831 A003832 A003833 KEYWORD nonn,easy AUTHOR EXTENSIONS a(8) and formula from Sean A. Irvine, Sep 17 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 05:05 EST 2021. Contains 349445 sequences. (Running on oeis4.)