login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003656 Discriminants of real quadratic fields with unique factorization.
(Formerly M3777)
28
5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53, 56, 57, 61, 69, 73, 76, 77, 88, 89, 92, 93, 97, 101, 109, 113, 124, 129, 133, 137, 141, 149, 152, 157, 161, 172, 173, 177, 181, 184, 188, 193, 197, 201, 209, 213, 217, 233, 236, 237, 241, 248, 249, 253, 268, 269 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Discriminants of real quadratic fields with class number 1.

Other than the term 8, every term is of one of the three following forms: (i) p, where p is a prime congruent to 1 modulo 4; (ii) 4p or 8p, where p is a prime congruent to 3 modulo 4; (iii) pq, where p, q are distinct primes congruent to 3 modulo 4. In fact, for a positive fundamental discriminant d, the class number of the real quadratic field of discriminant d is odd if and only if d = 8 or is of the form (i), (ii) or (iii). See Theorem 1 and Theorem 2 of Ezra Brown's link. - Jianing Song, Feb 24 2021

REFERENCES

D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.

H. Cohen, Advanced Topics in Computational Number Theory, Springer, 2000, p. 534.

H. Hasse, Number Theory, Springer-Verlag, NY, 1980, p. 576.

Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Ezra Brown, Class numbers of real quadratic number fields, Trans. Amer. Math. Soc. 190 (1974), 99-107.

Henri Cohen and X.-F. Roblot, Computing the Hilbert Class Field of Real Quadratic Fields, Math. Comp. 69 (2000), 1229-1244.

Eric Weisstein's World of Mathematics, Class Number

Index entries for sequences related to quadratic fields

MATHEMATICA

maxDisc = 269; t = Table[ {NumberFieldDiscriminant[ Sqrt[n] ], NumberFieldClassNumber[ Sqrt[n] ]}, {n, Select[ Range[2, maxDisc], SquareFreeQ] } ]; Union[ Select[ t, #[[2]] == 1 && #[[1]] <= maxDisc & ][[All, 1]]] (* Jean-François Alcover, Jan 24 2012 *)

PROG

(Sage)

is_fund_and_qfbcn_1 = lambda n: is_fundamental_discriminant(n) and QuadraticField(n, 'a').class_number() == 1

A003656 = lambda n: filter(is_fund_and_qfbcn_1, (1, 2, .., n))

A003656(270) # Peter Luschny, Aug 10 2014

CROSSREFS

Cf. A003652, A003658, A014602 (imaginary case).

For discriminants of real quadratic number fields with class number 2, 3, ..., 10, see A094619, A094612-A094614, A218156-A218160; see also A035120.

Sequence in context: A079896 A133315 A003658 * A003246 A143748 A124378

Adjacent sequences: A003653 A003654 A003655 * A003657 A003658 A003659

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane, Mira Bernstein

EXTENSIONS

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 15 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 16:57 EST 2022. Contains 358701 sequences. (Running on oeis4.)