login
A003160
a(1) = a(2) = 1, a(n) = n - a(a(n-1)) - a(a(n-2)).
(Formerly M0446)
7
1, 1, 1, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 9, 10, 11, 12, 12, 12, 13, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 29, 30, 30, 30, 31, 32, 33, 33, 33, 34, 35, 36, 36, 36, 37, 37, 37, 38
OFFSET
1,4
COMMENTS
Sequence of indices n where a(n-1) < a(n) appears to be given by A003156. - Joerg Arndt, May 11 2010
The number n appears A080426(n+1) times. - John Keith, Dec 31 2020
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, R. Scoville, and V. E. Hoggatt, Jr., Representations for a special sequence, Fibonacci Quarterly 10.5 (1972), 499-518, 550.
FORMULA
a(n) is asymptotic to n/2.
MATHEMATICA
Block[{a = {1, 1}}, Do[AppendTo[a, i - a[[ a[[-1]] ]] - a[[ a[[-2]] ]] ], {i, 3, 76}]; a] (* Michael De Vlieger, Dec 31 2020 *)
PROG
(PARI) a(n)=if(n<3, 1, n-a(a(n-1))-a(a(n-2)))
(Haskell)
a003160 n = a003160_list !! (n-1)
a003160_list = 1 : 1 : zipWith (-) [3..] (zipWith (+) xs $ tail xs)
where xs = map a003160 a003160_list
-- Reinhard Zumkeller, Aug 02 2013
(SageMath)
@CachedFunction
def a(n): return 1 if (n<3) else n - a(a(n-1)) - a(a(n-2))
[a(n) for n in range(1, 81)] # G. C. Greubel, Nov 06 2022
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Edited by Benoit Cloitre, Jan 01 2003
STATUS
approved