login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primitive roots that go with the primes in A002230.
(Formerly M0620 N0226)
4

%I M0620 N0226 #40 Feb 13 2023 11:16:12

%S 1,2,3,5,6,7,19,21,23,31,37,38,44,69,73,94,97,101,107,111,113,127,137,

%T 151,164,179,194,197,227,229,263,281,293,335,347,359,401,417

%N Primitive roots that go with the primes in A002230.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLIV.

%H R. K. Guy and N. J. A. Sloane, <a href="/A005180/a005180.pdf">Correspondence</a>, 1988.

%H Kevin J. McGown and Jonathan P. Sorenson, <a href="https://arxiv.org/abs/2206.14193">Computation of the least primitive root</a>, arXiv:2206.14193 [math.NT], 2022.

%H A. E. Western and J. C. P. Miller, <a href="/A002223/a002223.pdf">Tables of Indices and Primitive Roots</a>, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages]

%t s = {1}; rm = 1; Do[p = Prime[k]; r = PrimitiveRoot[p]; If[r > rm, Print[r]; AppendTo[s, r]; rm = r], {k, 10^6}]; s (* _Jean-François Alcover_, Apr 05 2011 *)

%o (Python)

%o from sympy import isprime, primitive_root

%o from itertools import count, islice

%o def f(n): return 0 if not isprime(n) or (r:=primitive_root(n))==None else r

%o def agen(r=0): yield from ((m, r:=f(m))[1] for m in count(1) if f(m) > r)

%o print(list(islice(agen(), 15))) # _Michael S. Branicky_, Feb 13 2023

%Y Cf. A002230.

%K nonn,more

%O 1,2

%A _N. J. A. Sloane_

%E More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)

%E a(35)-a(38), from McGown and Sorenson, added by _Michel Marcus_, Jun 29 2022