login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002229
Primitive roots that go with the primes in A002230.
(Formerly M0620 N0226)
4
1, 2, 3, 5, 6, 7, 19, 21, 23, 31, 37, 38, 44, 69, 73, 94, 97, 101, 107, 111, 113, 127, 137, 151, 164, 179, 194, 197, 227, 229, 263, 281, 293, 335, 347, 359, 401, 417
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLIV.
LINKS
R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
Kevin J. McGown and Jonathan P. Sorenson, Computation of the least primitive root, arXiv:2206.14193 [math.NT], 2022.
A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages]
MATHEMATICA
s = {1}; rm = 1; Do[p = Prime[k]; r = PrimitiveRoot[p]; If[r > rm, Print[r]; AppendTo[s, r]; rm = r], {k, 10^6}]; s (* Jean-François Alcover, Apr 05 2011 *)
PROG
(Python)
from sympy import isprime, primitive_root
from itertools import count, islice
def f(n): return 0 if not isprime(n) or (r:=primitive_root(n))==None else r
def agen(r=0): yield from ((m, r:=f(m))[1] for m in count(1) if f(m) > r)
print(list(islice(agen(), 15))) # Michael S. Branicky, Feb 13 2023
CROSSREFS
Cf. A002230.
Sequence in context: A073721 A285639 A090745 * A299158 A146747 A077674
KEYWORD
nonn,more
EXTENSIONS
More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
a(35)-a(38), from McGown and Sorenson, added by Michel Marcus, Jun 29 2022
STATUS
approved