login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002179 Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,2).
(Formerly M2921 N1172)
5
0, 1, 3, 12, 50, 27, 1323, -928, 1080, -48525, -3237113, -7587864, -31268252574, -770720657, -232936065, -179731134720, -542023437008852, -3212744374395, -926840515700222955, -389358194177500, -17858352159793110 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

REFERENCES

W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=2..22.

W. M. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65. [Annotated scanned copy]

MATHEMATICA

cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]*StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n-1]*cn[n-1, 2]; Table[a[n], {n, 2, 22}] (* Jean-Fran├žois Alcover, Oct 08 2013 *)

PROG

(PARI) cn(n)= mattranspose(matinverseimage( matrix(n+1, n+1, k, m, (m-1)^(k-1)), matrix(n+1, 1, k, m, n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution

(PARI) ncn(n)= denominator(cn(n))*cn(n); nk(n, k)= if(k<0 || k>n, 0, ncn(n)[ k+1 ]); A002177(n)= nk(n, 2)

CROSSREFS

Cf. A100640/A100641, A100620/A100621, A002176-A002178.

Sequence in context: A151175 A151176 A151177 * A224659 A034541 A180879

Adjacent sequences:  A002176 A002177 A002178 * A002180 A002181 A002182

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Michael Somos

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 12:43 EST 2020. Contains 332280 sequences. (Running on oeis4.)