login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002179
Numerators of Cotesian numbers (not in lowest terms): A002176*C(n,2).
(Formerly M2921 N1172)
5
0, 1, 3, 12, 50, 27, 1323, -928, 1080, -48525, -3237113, -7587864, -31268252574, -770720657, -232936065, -179731134720, -542023437008852, -3212744374395, -926840515700222955, -389358194177500, -17858352159793110
OFFSET
2,3
REFERENCES
W. W. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. M. Johnson, On Cotesian numbers: their history, computation and values to n=20, Quart. J. Pure Appl. Math., 46 (1914), 52-65. [Annotated scanned copy]
MATHEMATICA
cn[n_, 0] := Sum[n^j*StirlingS1[n, j]/(j+1), {j, 1, n+1}]/n!; cn[n_, n_] := cn[n, 0]; cn[n_, k_] := 1/n!*Binomial[n, k]*Sum[n^(j+m)*StirlingS1[k, j]*StirlingS1[n-k, m]/((m+1)*Binomial[j+m+1, m+1]), {m, 1, n}, {j, 1, k+1}]; A002176[n_] := LCM @@ Table[Denominator[cn[n, k]], {k, 0, n}]; a[2] = 0; a[n_] := A002176[n-1]*cn[n-1, 2]; Table[a[n], {n, 2, 22}] (* Jean-François Alcover, Oct 08 2013 *)
PROG
(PARI) cn(n)= mattranspose(matinverseimage( matrix(n+1, n+1, k, m, (m-1)^(k-1)), matrix(n+1, 1, k, m, n^(k-1)/k)))[ 1, ] \\ vector of quadrature formula coefficients via matrix solution
(PARI) ncn(n)= denominator(cn(n))*cn(n); nk(n, k)= if(k<0 || k>n, 0, ncn(n)[ k+1 ]); A002177(n)= nk(n, 2)
KEYWORD
sign,easy
EXTENSIONS
More terms from Michael Somos
STATUS
approved