login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002158 Numbers k for which rank of the elliptic curve y^2 = x^3 + k*x is 0.
(Formerly M0981 N0369)
5
1, 2, 4, 6, 7, 10, 11, 12, 16, 17, 22, 23, 25, 26, 27, 30, 32, 36, 38, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 62, 64, 70, 71, 72, 74, 75, 76, 78, 81, 82, 86, 87, 91, 96, 97, 102, 103, 106, 107, 108, 110, 112, 116, 117, 118, 119, 122, 123, 130, 132, 134, 135, 137, 139, 140, 142, 146, 147, 151, 160, 161, 162, 166, 167, 169, 170, 172, 174, 176, 177, 182, 186, 187, 190, 192, 193, 194, 199 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..2000

B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves, I, J. Reine Angew. Math., 212 (1963), 7-25.

PROG

(MAGMA) for k in[1..200] do if Rank(EllipticCurve([0, 0, 0, k, 0])) eq 0 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019

(PARI) for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==0, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019

CROSSREFS

Cf. A002159 (rank 1), A076329 (rank 2).

Cf. A060953.

Sequence in context: A050095 A102528 A325539 * A319829 A272631 A274431

Adjacent sequences:  A002155 A002156 A002157 * A002159 A002160 A002161

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Corrected and extended by Vaclav Kotesovec, Jul 07 2019

New name by Vaclav Kotesovec, Jul 07 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 5 18:37 EDT 2021. Contains 343573 sequences. (Running on oeis4.)