The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002158 Numbers k for which rank of the elliptic curve y^2 = x^3 + k*x is 0. (Formerly M0981 N0369) 5
 1, 2, 4, 6, 7, 10, 11, 12, 16, 17, 22, 23, 25, 26, 27, 30, 32, 36, 38, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 62, 64, 70, 71, 72, 74, 75, 76, 78, 81, 82, 86, 87, 91, 96, 97, 102, 103, 106, 107, 108, 110, 112, 116, 117, 118, 119, 122, 123, 130, 132, 134, 135, 137, 139, 140, 142, 146, 147, 151, 160, 161, 162, 166, 167, 169, 170, 172, 174, 176, 177, 182, 186, 187, 190, 192, 193, 194, 199 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..2000 B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves, I, J. Reine Angew. Math., 212 (1963), 7-25. PROG (Magma) for k in[1..200] do if Rank(EllipticCurve([0, 0, 0, k, 0])) eq 0 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019 (PARI) for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==0, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019 CROSSREFS Cf. A002159 (rank 1), A076329 (rank 2). Cf. A060953. Sequence in context: A050095 A102528 A325539 * A319829 A272631 A347694 Adjacent sequences: A002155 A002156 A002157 * A002159 A002160 A002161 KEYWORD nonn AUTHOR N. J. A. Sloane. EXTENSIONS Corrected and extended by Vaclav Kotesovec, Jul 07 2019 New name by Vaclav Kotesovec, Jul 07 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 05:06 EDT 2023. Contains 363139 sequences. (Running on oeis4.)