%I M2345 N0926
%S 1,3,4,8,9,11,13,16,18,19,24,27,28,29,33,35,40,43,44,48,51,59,61,63,
%T 64,67,68,75,81,83,88,91,92,93,98,100,104,107,108,109,113,115,120,121,
%U 123,125,126,128,129,131,139,144,152,153,157,163,164,168,172,173,176,177,179,180,187,189,193,195,198,200
%N Numbers k for which rank of the elliptic curve y^2 = x^3  k*x is 0.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A002156/b002156.txt">Table of n, a(n) for n = 1..1730</a>
%H B. J. Birch and H. P. F. SwinnertonDyer, <a href="http://dx.doi.org/10.1515/crll.1963.212.7">Notes on elliptic curves, I</a>, J. Reine Angew. Math., 212 (1963), 725.
%H B. J. Birch and H. P. F. SwinnertonDyer, <a href="https://eudml.org/doc/150565">Notes on elliptic curves, I</a>, J. Reine Angew. Math., 212 (1963), 725 (open access).
%o (MAGMA) for k in[1..200] do if Rank(EllipticCurve([0,0,0,k,0])) eq 0 then print k; end if; end for; // _Vaclav Kotesovec_, Jul 07 2019
%o (PARI) for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==0, print1(k", "))) \\ _Seiichi Manyama_, Jul 07 2019
%Y Cf. A060952.
%K nonn
%O 1,2
%A _N. J. A. Sloane_.
%E Corrected and extended by _Vaclav Kotesovec_, Jul 07 2019
%E New name by _Vaclav Kotesovec_, Jul 07 2019
