OFFSET
0,4
COMMENTS
Or number of n X n (0,1) matrices with two 1's in each row the permanent of which equals to 2. Note that, if (0,1) matrix with two 1's in each row has positive permanent, then it is equal to a power of 2. - Vladimir Shevelev, Mar 25 2010
REFERENCES
V. S. Shevelev, On the permanent of the stochastic (0,1)-matrices with equal row sums, Izvestia Vuzov of the North-Caucasus region, Nature sciences 1 (1997), 21-38 (in Russian). - Vladimir Shevelev, Mar 25 2010
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..100
T. L. Austin, R. E. Fagen, W. F. Penney, and John Riordan, The number of components in random linear graphs, Ann. Math. Statist 30 1959 747-754.
J. Riordan, Letter to N. J. A. Sloane, Aug. 1970
FORMULA
Explicit formula: a(n) = (n!^2*n^(n-1)/2)*Sum_{k=2..n} n^(-k)/(n-k)!; Recursion: a(2)=1, for n>=3, a(n) = n!*((n-1)!/2+Sum_{k=2..n-1} (-1)^(n+k+1)*k^(n-k)*binomial(n,k)*a(k)/k!). - Vladimir Shevelev, Mar 25 2010
a(n) ~ Pi * n^(2*n) / (2*exp(n)). - Vaclav Kotesovec, Nov 30 2017
MATHEMATICA
Join[{0}, Table[(n!^2*n^(n - 1)/2)*Sum[n^(-k)/(n - k)!, {k, 2, n}], {n, 20}]] (* T. D. Noe, Aug 10 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved