Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1941 N0769 #29 Feb 01 2022 01:20:06
%S 1,1,2,9,54,450,4500,55125,771750,12502350,225042300,4538353050,
%T 99843767100,2410513805700,62673358948200,1762688220418125,
%U 52880646612543750,1698056319002793750,57733914846094987500,2084194325944029048750
%N Expansion of an integral: central elements of rows of triangle in A059366.
%C For information about the trigonometric integral whose expansion involves the triangle A059366, see my comments and examples there. - _Petros Hadjicostas_, May 13 2020
%D L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 166-167.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%F a(n) = A000984(floor(n/2))*A000984(ceiling(n/2))*A000142(n)/A000079(n). [Corrected by _Petros Hadjicostas_, May 13 2020]
%F From _Petros Hadjicostas_, May 13 2020: (Start)
%F a(n) = A059366(n, floor(n/2)) = A059366(n, ceiling(n/2)).
%F a(2*n) = A283678(n). (End)
%Y Cf. A000079, A000142, A000984, A059366, A283678.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_
%E More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001
%E Corrected and extended by _Sean A. Irvine_, Nov 19 2012
%E a(0) = 1 prepended by _Petros Hadjicostas_, May 13 2020