The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001622 Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2.
(Formerly M4046 N1679)
1641

%I M4046 N1679 #522 May 05 2024 19:45:36

%S 1,6,1,8,0,3,3,9,8,8,7,4,9,8,9,4,8,4,8,2,0,4,5,8,6,8,3,4,3,6,5,6,3,8,

%T 1,1,7,7,2,0,3,0,9,1,7,9,8,0,5,7,6,2,8,6,2,1,3,5,4,4,8,6,2,2,7,0,5,2,

%U 6,0,4,6,2,8,1,8,9,0,2,4,4,9,7,0,7,2,0,7,2,0,4,1,8,9,3,9,1,1,3,7,4,8,4,7,5

%N Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2.

%C Also decimal expansion of the positive root of (x+1)^n - x^(2n). (x+1)^n - x^(2n) = 0 has only two real roots x1 = -(sqrt(5)-1)/2 and x2 = (sqrt(5)+1)/2 for all n > 0. - _Cino Hilliard_, May 27 2004

%C The golden ratio phi is the most irrational among irrational numbers; its successive continued fraction convergents F(n+1)/F(n) are the slowest to approximate to its actual value (I. Stewart, in "Nature's Numbers", Basic Books, 1997). - _Lekraj Beedassy_, Jan 21 2005

%C Let t=golden ratio. The lesser sqrt(5)-contraction rectangle has shape t-1, and the greater sqrt(5)-contraction rectangle has shape t. For definitions of shape and contraction rectangles, see A188739. - _Clark Kimberling_, Apr 16 2011

%C The golden ratio (often denoted by phi or tau) is the shape (i.e., length/width) of the golden rectangle, which has the special property that removal of a square from one end leaves a rectangle of the same shape as the original rectangle. Analogously, removals of certain isosceles triangles characterize side-golden and angle-golden triangles. Repeated removals in these configurations result in infinite partitions of golden rectangles and triangles into squares or isosceles triangles so as to match the continued fraction, [1,1,1,1,1,...] of tau. For the special shape of rectangle which partitions into golden rectangles so as to match the continued fraction [tau, tau, tau, ...], see A188635. For other rectangular shapes which depend on tau, see A189970, A190177, A190179, A180182. For triangular shapes which depend on tau, see A152149 and A188594; for tetrahedral, see A178988. - _Clark Kimberling_, May 06 2011

%C Given a pentagon ABCDE, 1/(phi)^2 <= (A*C^2 + C*E^2 + E*B^2 + B*D^2 + D*A^2) / (A*B^2 + B*C^2 + C*D^2 + D*E^2 + E*A^2) <= (phi)^2. - _Seiichi Kirikami_, Aug 18 2011

%C If a triangle has sides whose lengths form a geometric progression in the ratio of 1:r:r^2 then the triangle inequality condition requires that r be in the range 1/phi < r < phi. - _Frank M Jackson_, Oct 12 2011

%C The graphs of x-y=1 and x*y=1 meet at (tau,1/tau). - _Clark Kimberling_, Oct 19 2011

%C Also decimal expansion of the first root of x^sqrt(x+1) = sqrt(x+1)^x. - _Michel Lagneau_, Dec 02 2011

%C Also decimal expansion of the root of (1/x)^(1/sqrt(x+1)) = (1/sqrt(x+1))^(1/x). - _Michel Lagneau_, Apr 17 2012

%C This is the case n=5 of (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)): (1+sqrt(5))/2 = (Gamma(1/5)/Gamma(3/5))*(Gamma(4/5)/Gamma(2/5)). - _Bruno Berselli_, Dec 14 2012

%C Also decimal expansion of the only number x>1 such that (x^x)^(x^x) = (x^(x^x))^x = x^((x^x)^x). - _Jaroslav Krizek_, Feb 01 2014

%C For n >= 1, round(phi^prime(n)) == 1 (mod prime(n)) and, for n >= 3, round(phi^prime(n)) == 1 (mod 2*prime(n)). - _Vladimir Shevelev_, Mar 21 2014

%C The continuous radical sqrt(1+sqrt(1+sqrt(1+...))) tends to phi. - _Giovanni Zedda_, Jun 22 2019

%C Equals sqrt(2+sqrt(2-sqrt(2+sqrt(2-...)))). - _Diego Rattaggi_, Apr 17 2021

%C Given any complex p such that real(p) > -1, phi is the only real solution of the equation z^p+z^(p+1)=z^(p+2), and the only attractor of the complex mapping z->M(z,p), where M(z,p)=(z^p+z^(p+1))^(1/(p+2)), convergent from any complex plane point. - _Stanislav Sykora_, Oct 14 2021

%C The only positive number such that its decimal part, its integral part and the number itself (x-[x], [x] and x) form a geometric progression is phi, with respectively (phi -1, 1, phi) and a ratio = phi. This is the answer to the 4th problem of the 7th Canadian Mathematical Olympiad in 1975 (see IMO link and Doob reference). - _Bernard Schott_, Dec 08 2021

%C The golden ratio is the unique number x such that f(n*x)*c(n/x) - f(n/x)*c(n*x) = n for all n >= 1, where f = floor and c = ceiling. - _Clark Kimberling_, Jan 04 2022

%C In The Second Scientific American Book Of Mathematical Puzzles and Diversions, Martin Gardner wrote that, by 1910, Mark Barr (1871-1950) gave phi as a symbol for the golden ratio. - _Bernard Schott_, May 01 2022

%C Phi is the length of the equal legs of an isosceles triangle with side c = phi^2, and internal angles (A,B) = 36 degrees, C = 108 degrees. - _Gary W. Adamson_, Jun 20 2022

%C The positive solution to x^2 - x - 1 = 0. - _Michal Paulovic_, Jan 16 2023

%D Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993 - Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1975, pages 76-77, 1993.

%D Richard A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific, River Edge, NJ, 1997.

%D Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, Section 1.2.

%D Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, Simon & Schuster, NY, 1961.

%D Martin Gardner, Weird Water and Fuzzy Logic: More Notes of a Fringe Watcher, "The Cult of the Golden Ratio", Chapter 9, Prometheus Books, 1996, pages 90-97.

%D H. E. Huntley, The Divine Proportion, Dover, NY, 1970.

%D Mario Livio, The Golden Ratio, Broadway Books, NY, 2002. [see the review by G. Markowsky in the links field]

%D Gary B. Meisner, The Golden Ratio: The Divine Beauty of Mathematics, Race Point Publishing (The Quarto Group), 2018. German translation: Der Goldene Schnitt, Librero, 2023.

%D Scott Olsen, The Golden Section, Walker & Co., NY, 2006.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D Hans Walser, The Golden Section, Math. Assoc. of Amer. Washington DC 2001.

%D Claude-Jacques Willard, Le nombre d'or, Magnard, Paris, 1987.

%H Robert G. Wilson v, <a href="/A001622/b001622.txt">Table of n, a(n) for n = 1..100000</a>

%H Mohammad K. Azarian, <a href="https://doi.org/10.35834/1998/1003176">Problem 123</a>, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3 (Fall 1998), p. 176; <a href="https://doi.org/10.35834/2000/1201050">Solution</a>, ibid., Vol. 12, No. 1 (Winter 2000), pp. 61-62.

%H John Baez, <a href="http://math.ucr.edu/home/baez/week203.html">This week's finds in mathematical physics, Week 203</a>.

%H John Baez, <a href="http://math.ucr.edu/home/baez/numbers/">The Rankin Lectures 2008, My Favorite Numbers: 5</a>. [<a href="http://www.youtube.com/watch?v=2oPGmxDua2U">video</a>]

%H Murray Berg, <a href="http://www.fq.math.ca/Scanned/4-2/berg.pdf">Phi, the golden ratio (to 4599 decimal places) and Fibonacci numbers</a>, Fib. Quart., Vol. 4, No. 2 (1961), pp. 157-162.

%H Ömür Deveci, Zafer Adıgüzel and Taha Doğan, <a href="https://doi.org/10.7546/nntdm.2020.26.1.179-190">On the Generalized Fibonacci-circulant-Hurwitz numbers</a>, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 1, 179-190.

%H T. Eveilleau, <a href="http://perso.orange.fr/therese.eveilleau/pages/truc_mat/textes/rectangle_dor.htm">Le nombre d'or</a> (in French).

%H Abdul Gaffar, Anand B. Joshi, Sonali Singh, and Keerti Srivastava, <a href="https://doi.org/10.1007/s11042-022-12246-y">A high capacity multi-image steganography technique based on golden ratio and non-subsampled contourlet transform</a>, Multimedia Tools and Applications (2022).

%H Gutenberg Project, <a href="http://www.gutenberg.org/etext/633">The golden ratio to 20000 places</a>.

%H ICON Project, <a href="http://www.cs.arizona.edu/icon/oddsends/phi.htm">The golden ratio to 50000 places</a>.

%H The IMO Compendium, <a href="https://imomath.com/othercomp/Can/CanMO75.pdf">Problem 4</a>, 7th Canadian Mathematical Olympiad 1975.

%H L. B. W. Jolley, <a href="https://archive.org/details/summationofserie00joll">Summation of Series</a>, Dover, 1961

%H Franklin H. J. Kenter, <a href="https://arxiv.org/abs/1712.04856">It's good to be phi: a solution to a problem of Gosper and Knuth</a>, arXiv:1712.04856 [math.HO], 2017.

%H Clark Kimberling, <a href="https://www.heldermann.de/JGG/JGG11/JGG112/jgg11014.htm">Two kinds of golden triangles, generalized to match continued fractions</a>, Journal for Geometry and Graphics, Vol. 11 (2007), pp. 165-171.

%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Kimberling/kimber12.html">Lucas Representations of Positive Integers</a>, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/">Fibonacci numbers and the golden section</a>.

%H Wolfdieter Lang, <a href="https://www.itp.kit.edu/~wl/EISpub/A333852.pdf">A list of representative simple difference sets of the Singer type for small orders m</a>, Karlsruher Institut für Technologie (Karlsruhe, Germany 2020).

%H Wolfdieter Lang, <a href="https://arxiv.org/abs/2307.10645">Cantor's List of Real Algebraic Numbers of Heights 1 to 7</a>, arXiv:2307.10645 [math.NT], 2023.

%H Simon Litsyn and Vladimir Shevelev, <a href="http://dx.doi.org/10.1142/S1793042105000339">Irrational Factors Satisfying the Little Fermat Theorem</a>, International Journal of Number Theory, Vol. 1, No. 4 (2005), pp. 499-512.

%H Gary B. Meisner, <a href="https://www.goldennumber.net/">Phi, The Golden Number</a>.

%H George Markowsky, <a href="http://www.umcs.maine.edu/~markov/GoldenRatio.pdf">Misconceptions About the Golden Ratio</a>, College Mathematics Journal, 23:1 (January 1992), 2-19.

%H George Markowsky, <a href="http://www.ams.org/notices/200503/rev-markowsky.pdf">Book review: The Golden Ratio</a>, Notices of the AMS, 52:3 (March 2005), 344-347.

%H R. S. Melham and A. G. Shannon, <a href="https://www.fq.math.ca/Scanned/33-1/melham2.pdf">Inverse Trigonometric Hyperbolic Summation Formulas Involving Generalized Fibonacci Numbers</a>, The Fibonacci Quarterly, Vol. 33, No. 1 (1995), pp. 32-40.

%H Jean-Christophe Michel, <a href="http://jc.michel.free.fr/nombre_d_or.php">Le nombre d'or</a>.

%H J. J. O'Connor and E. F. Robertson, <a href="https://mathshistory.st-andrews.ac.uk/HistTopics/Golden_ratio/">The Golden ratio</a>.

%H Hugo Pfoertner, <a href="/A001622/a001622.txt">1 million digits of phi</a>, Computed using A. J. Yee's y-cruncher.

%H Simon Plouffe, Plouffe's Inverter, <a href="http://www.plouffe.fr/simon/constants/golden.txt">The golden ratio to 10 million digits</a>. [Only announcement, file truncated]

%H Simon Plouffe, <a href="http://web.archive.org/web/20150911212308/http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap46.html">The golden ratio:(1+sqrt(5))/2 to 20000 places</a>.

%H Fred Richman, Fibonacci sequence with multiprecision Java, <a href="http://math.fau.edu/Richman/fibjava.htm">Successive approximations to phi from ratios of consecutive Fibonacci numbers</a>.

%H Herman P. Robinson, <a href="/A257574/a257574.pdf">The CSR Function</a>, Popular Computing (Calabasas, CA), Vol. 4, No. 35 (Feb 1976), pages PC35-3 to PC35-4. Annotated and scanned copy.

%H E. F. Schubert, <a href="https://www.ecse.rpi.edu/~schubert/Educational-resources/Fibonacci%20series.pdf">The Fibonacci series</a>.

%H Vladimir Shevelev, <a href="http://list.seqfan.eu/oldermail/seqfan/2014-March/012737.html">A property of n-bonacci constant</a>, Seqfan (Mar 23 2014).

%H Jonathan Sondow, <a href="http://arxiv.org/abs/1106.4246">Evaluation of Tachiya's algebraic infinite products involving Fibonacci and Lucas numbers</a>, Diophantine Analysis and Related Fields 2011 - AIP Conference Proceedings, Vol. 1385, pp. 97-100; arXiv:1106.4246 [math.NT], 2011.

%H Matthew R. Watkins, <a href="http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/goldenmean.htm">The "Golden Mean" in number theory</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoldenRatio.html">Golden Ratio</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SilverRatio.html">Silver Ratio</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Mark_Barr">Mark Barr</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Golden_ratio">Golden ratio</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Kronecker-Weber_theorem">Kronecker-Weber theorem</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Metallic_mean">Metallic mean</a>.

%H Alexander J. Yee, <a href="http://www.numberworld.org/y-cruncher">y-cruncher - A Multi-Threaded Pi-Program</a>.

%H <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>

%H <a href="/index/O#Olympiads">Index to sequences related to Olympiads</a>.

%F Equals Sum_{n>=2} 1/A064170(n) = 1/1 + 1/2 + 1/(2*5) + 1/(5*13) + 1/(13*34) + ... - _Gary W. Adamson_, Dec 15 2007

%F Equals Hypergeometric2F1([1/5, 4/5], [1/2], 3/4) = 2*cos((3/5)*arcsin(sqrt(3/4))). - _Artur Jasinski_, Oct 26 2008

%F From _Hieronymus Fischer_, Jan 02 2009: (Start)

%F The fractional part of phi^n equals phi^(-n), if n is odd. For even n, the fractional part of phi^n is equal to 1-phi^(-n).

%F General formula: Provided x>1 satisfies x-x^(-1)=floor(x), where x=phi for this sequence, then:

%F for odd n: x^n - x^(-n) = floor(x^n), hence fract(x^n) = x^(-n),

%F for even n: x^n + x^(-n) = ceiling(x^n), hence fract(x^n) = 1 - x^(-n),

%F for all n>0: x^n + (-x)^(-n) = round(x^n).

%F x=phi is the minimal solution to x - x^(-1) = floor(x) (where floor(x)=1 in this case).

%F Other examples of constants x satisfying the relation x - x^(-1) = floor(x) include A014176 (the silver ratio: where floor(x)=2) and A098316 (the "bronze" ratio: where floor(x)=3). (End)

%F Equals 2*cos(Pi/5) = e^(i*Pi/5) + e^(-i*Pi/5). - _Eric Desbiaux_, Mar 19 2010

%F The solutions to x-x^(-1)=floor(x) are determined by x=(1/2)*(m+sqrt(m^2+4)), m>=1; x=phi for m=1. In terms of continued fractions the solutions can be described by x=[m;m,m,m,...], where m=1 for x=phi, and m=2 for the silver ratio A014176, and m=3 for the bronze ratio A098316. - _Hieronymus Fischer_, Oct 20 2010

%F Sum_{n>=1} x^n/n^2 = Pi^2/10 - (log(2)*sin(Pi/10))^2 where x = 2*sin(Pi/10) = this constant here. [Jolley, eq 360d]

%F phi = 1 + Sum_{k>=1} (-1)^(k-1)/(F(k)*F(k+1)), where F(n) is the n-th Fibonacci number (A000045). Proof. By Catalan's identity, F^2(n) - F(n-1)*F(n+1) = (-1)^(n-1). Therefore,(-1)^(n-1)/(F(n)*F(n+1)) = F(n)/F(n+1) - F(n-1)/F(n). Thus Sum_{k=1..n} (-1)^(k-1)/(F(k)*F(k+1)) = F(n)/F(n+1). If n goes to infinity, this tends to 1/phi = phi - 1. - _Vladimir Shevelev_, Feb 22 2013

%F phi^n = (A000032(n) + A000045(n)*sqrt(5)) / 2. - _Thomas Ordowski_, Jun 09 2013

%F Let P(q) = Product_{k>=1} (1 + q^(2*k-1)) (the g.f. of A000700), then A001622 = exp(Pi/6) * P(exp(-5*Pi)) / P(exp(-Pi)). - _Stephen Beathard_, Oct 06 2013

%F phi = i^(2/5) + i^(-2/5) = ((i^(4/5))+1) / (i^(2/5)) = 2*(i^(2/5) - (sin(Pi/5))i) = 2*(i^(-2/5) + (sin(Pi/5))i). - _Jaroslav Krizek_, Feb 03 2014

%F phi = sqrt(2/(3 - sqrt(5))) = sqrt(2)/A094883. This follows from the fact that ((1 + sqrt(5))^2)*(3 - sqrt(5)) = 8, so that ((1 + sqrt(5))/2)^2 = 2/(3 - sqrt(5)). - _Geoffrey Caveney_, Apr 19 2014

%F exp(arcsinh(cos(Pi/2-log(phi)*i))) = exp(arcsinh(sin(log(phi)*i))) = (sqrt(3) + i) / 2. - _Geoffrey Caveney_, Apr 23 2014

%F exp(arcsinh(cos(Pi/3))) = phi. - _Geoffrey Caveney_, Apr 23 2014

%F cos(Pi/3) + sqrt(1 + cos(Pi/3)^2). - _Geoffrey Caveney_, Apr 23 2014

%F 2*phi = z^0 + z^1 - z^2 - z^3 + z^4, where z = exp(2*Pi*i/5). See the Wikipedia Kronecker-Weber theorem link. - _Jonathan Sondow_, Apr 24 2014

%F phi = 1/2 + sqrt(1 + (1/2)^2). - _Geoffrey Caveney_, Apr 25 2014

%F Phi is the limiting value of the iteration of x -> sqrt(1+x) on initial value a >= -1. - _Chayim Lowen_, Aug 30 2015

%F From _Isaac Saffold_, Feb 28 2018: (Start)

%F 1 = Sum_{k=0..n} binomial(n, k) / phi^(n+k) for all nonnegative integers n.

%F 1 = Sum_{n>=1} 1 / phi^(2n-1).

%F 1 = Sum_{n>=2} 1 / phi^n.

%F phi = Sum_{n>=1} 1/phi^n. (End)

%F From _Christian Katzmann_, Mar 19 2018: (Start)

%F phi = Sum_{n>=0} (15*(2*n)! + 8*n!^2)/(2*n!^2*3^(2*n+2)).

%F phi = 1/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)

%F phi = Product_{k>=1} (1 + 2/(-1 + 2^k*(sqrt(4+(1-2/2^k)^2) + sqrt(4+(1-1/2^k)^2)))). - _Gleb Koloskov_, Jul 14 2021

%F Equals Product_{k>=1} (Fibonacci(3*k)^2 + (-1)^(k+1))/(Fibonacci(3*k)^2 + (-1)^k) (Melham and Shannon, 1995). - _Amiram Eldar_, Jan 15 2022

%F From _Michal Paulovic_, Jan 16 2023: (Start)

%F Equals the real part of 2 * e^(i * Pi / 5).

%F Equals 2 * sin(3 * Pi / 10) = 2*A019863.

%F Equals -2 * sin(37 * Pi / 10).

%F Equals 1 + 1 / (1 + 1 / (1 + 1 / (1 + 1 / (1 + 1 / ...)))).

%F Equals (2 + 3 * (2 + 3 * (2 + 3 * ...)^(1/4))^(1/4))^(1/4).

%F Equals (1 + 2 * (1 + 2 * (1 + 2 * ...)^(1/3))^(1/3))^(1/3).

%F Equals (1 + phi + (1 + phi + (1 + phi + ...)^(1/3))^(1/3))^(1/3).

%F Equals 13/8 + Sum_{k=0..oo} (-1)^(k+1)*(2*k+1)!/((k+2)!*k!*4^(2*k+3)).

%F (End)

%F phi^n = phi * A000045(n) + A000045(n-1). - _Gary W. Adamson_, Sep 09 2023

%F The previous formula holds for integer n, with F(-n) = (-1)^(n+1)*F(n), for n >= 0, with F(n) = A000045(n), for n >= 0. phi^n are integers in the quadratic number field Q(sqrt(5)). - _Wolfdieter Lang_, Sep 16 2023

%F Equals Product_{k>=0} ((5*k + 2)*(5*k + 3))/((5*k + 1)*(5*k + 4)). - _Antonio Graciá Llorente_, Feb 24 2024

%F From _Antonio Graciá Llorente_, Apr 21 2024: (Start)

%F Equals Product_{k>=1} phi^(-2^k) + 1, with phi = A001622.

%F Equals Product_{k>=0} ((5^(k+1) + 1)*(5^(k-1/2) + 1))/((5^k + 1)*(5^(k+1/2) + 1)).

%F Equals Product_{k>=1} 1 - (4*(-1)^k)/(10*k - 5 + (-1)^k) = Product_{k>=1} A047221(k)/A047209(k).

%F Equals Product_{k>=0} ((5*k + 7)*(5*k + 1 + (-1)^k))/((5*k + 1)*(5*k + 7 + (-1)^k)).

%F Equals Product_{k>=0} ((10*k + 3)*(10*k + 5)*(10*k + 8)^2)/((10*k + 2)*(10*k + 4)*(10*k + 9)^2).

%F Equals Product_{k>=5} 1 + 1/(Fibonacci(k) - (-1)^k).

%F Equals Product_{k>=2} 1 + 1/Fibonacci(2*k).

%F Equals Product_{k>=2} (Lucas(k)^2 + (-1)^k)/(Lucas(k)^2 - 4*(-1)^k). (End)

%e 1.6180339887498948482045868343656381177203091798057628621...

%p Digits:=1000; evalf((1+sqrt(5))/2); # _Wesley Ivan Hurt_, Nov 01 2013

%t RealDigits[(1 + Sqrt[5])/2, 10, 130] (* _Stefan Steinerberger_, Apr 02 2006 *)

%t RealDigits[ Exp[ ArcSinh[1/2]], 10, 111][[1]] (* _Robert G. Wilson v_, Mar 01 2008 *)

%t RealDigits[GoldenRatio,10,120][[1]] (* _Harvey P. Dale_, Oct 28 2015 *)

%o (PARI) default(realprecision, 20080); x=(1+sqrt(5))/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b001622.txt", n, " ", d)); \\ _Harry J. Smith_, Apr 19 2009

%o (PARI)

%o /* Digit-by-digit method: write it as 0.5+sqrt(1.25) and start at hundredths digit */

%o r=11; x=400; print(1); print(6);

%o for(dig=1, 110, {d=0; while((20*r+d)*d <= x, d++);

%o d--; /* while loop overshoots correct digit */

%o print(d); x=100*(x-(20*r+d)*d); r=10*r+d})

%o \\ _Michael B. Porter_, Oct 24 2009

%o (PARI)

%o a(n) = floor(10^(n-1)*(quadgen(5))%10);

%o alist(len) = digits(floor(quadgen(5)*10^(len-1))); \\ _Chittaranjan Pardeshi_, Jun 22 2022

%o (Python)

%o from sympy import S

%o def alst(n): # truncate extra last digit to avoid rounding

%o return list(map(int, str(S.GoldenRatio.n(n+1)).replace(".", "")))[:-1]

%o print(alst(105)) # _Michael S. Branicky_, Jan 06 2021

%Y Cf. A000012 (continued fraction coefficients), A000032, A000045, A006497, A080039, A104457, A188635, A192222, A192223, A145996, A139339, A197762, A002163, A094874, A134973.

%Y Cf. A102208, A102769, A131595.

%Y Cf. A302973, A303069, A304022.

%K nonn,cons,nice,easy,changed

%O 1,2

%A _N. J. A. Sloane_

%E Additional links contributed by _Lekraj Beedassy_, Dec 23 2003

%E More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 24 2004

%E More terms from _Stefan Steinerberger_, Apr 02 2006

%E Broken URL to Project Gutenberg replaced by _Georg Fischer_, Jan 03 2009

%E Edited by _M. F. Hasler_, Feb 24 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 20:41 EDT 2024. Contains 372494 sequences. (Running on oeis4.)