login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001393 High temperature series for spin-1/2 Ising free energy on 3-dimensional simple cubic lattice.
(Formerly M3093 N1253)
1
1, 0, 3, 22, 192, 2046, 24853, 329334, 4649601, 68884356, 1059830112, 16809862992, 273374177222, 4539862959852 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.

A. J. Guttmann and I. G. Enting, Series studies of the Potts model: I. The simple cubic Ising model, J. Phys. A 26 (1993) 807-821.

A. J. Guttmann and I. G. Enting, The high-temperature specific heat exponent of the 3-dimensional Ising model, J. Phys. A 27 (1994) 8007-8010.

G. S. Rushbrooke and J. Eve, High-temperature Ising partition function and related noncrossing polygons for the simple cubic lattice, J. Math. Physics 3 (1962) 185-189.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..13.

Steven R. Finch, Lenz-Ising Constants [broken link]

Steven R. Finch, Lenz-Ising Constants [From the Wayback Machine]

Index entries for sequences related to specific heat

CROSSREFS

Sequence in context: A278333 A132595 A065204 * A046743 A121952 A250888

Adjacent sequences:  A001390 A001391 A001392 * A001394 A001395 A001396

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Corrections and updates from Steven Finch

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 18:47 EST 2020. Contains 332308 sequences. (Running on oeis4.)