Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Aug 30 2023 05:20:56
%S 6,16,1116,3116,132116,1113122116,311311222116,13211321322116,
%T 1113122113121113222116,31131122211311123113322116,
%U 132113213221133112132123222116
%N Describe the previous term! (method A - initial term is 6).
%C Method A = 'frequency' followed by 'digit'-indication.
%C a(n+1) - a(n) is divisible by 10^5 for n > 5. - _Altug Alkan_, Dec 04 2015
%D S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
%D I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.
%H T. D. Noe, <a href="/A001143/b001143.txt">Table of n, a(n) for n = 1..20</a>
%H J. H. Conway, <a href="http://dx.doi.org/10.1007/978-1-4612-4808-8_53">The weird and wonderful chemistry of audioactive decay</a>, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.
%H S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/cnwy/cnwy.html">Conway's Constant</a>. [Broken link]
%H S. R. Finch, <a href="http://web.archive.org/web/20010207194413 /http://www.mathsoft.com/asolve/constant/cnwy/cnwy.html">Conway's Constant</a>. [From the Wayback Machine]
%e The term after 3116 is obtained by saying "one 3, two 1's, one 6", which gives 132116.
%t RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 6 ][ [ n ] ]; Table[ FromDigits[ F[ n ] ], {n, 1, 11} ] (* _Zerinvary Lajos_, Mar 21 2007 *)
%Y Cf. A001155, A005150, A006751, A006715, A001140, A001141, A001145, A001151, A001154.
%K nonn,base,easy,nice
%O 1,1
%A _N. J. A. Sloane_