

A001143


Describe the previous term! (method A  initial term is 6).


15



6, 16, 1116, 3116, 132116, 1113122116, 311311222116, 13211321322116, 1113122113121113222116, 31131122211311123113322116, 132113213221133112132123222116
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Method A = 'frequency' followed by 'digit'indication.
a(n+1)  a(n) is divisible by 10^5 for n > 5.  Altug Alkan, Dec 04 2015


REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452455.
I. Vardi, Computational Recreations in Mathematica. AddisonWesley, Redwood City, CA, 1991, p. 4.


LINKS

T. D. Noe, Table of n, a(n) for n=1..20
J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173188.
S. R. Finch, Conway's Constant [Broken link]


EXAMPLE

E.g. the term after 3116 is obtained by saying "one 3, two 1's, one 6", which gives 132116.


MATHEMATICA

RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n  1 ]; F[ n_ ] := LookAndSay[ n, 6 ][ [ n ] ]; Table[ FromDigits[ F[ n ] ], {n, 1, 11} ] (* Zerinvary Lajos, Mar 21 2007 *)


CROSSREFS

Cf. A001155, A005150, A006751, A006715, A001140, A001141, A001145, A001151, A001154.
Sequence in context: A303213 A264511 A053334 * A177365 A138490 A022510
Adjacent sequences: A001140 A001141 A001142 * A001144 A001145 A001146


KEYWORD

nonn,base,easy,nice


AUTHOR

N. J. A. Sloane


STATUS

approved



