login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001143
Describe the previous term! (method A - initial term is 6).
15
6, 16, 1116, 3116, 132116, 1113122116, 311311222116, 13211321322116, 1113122113121113222116, 31131122211311123113322116, 132113213221133112132123222116
OFFSET
1,1
COMMENTS
Method A = 'frequency' followed by 'digit'-indication.
a(n+1) - a(n) is divisible by 10^5 for n > 5. - Altug Alkan, Dec 04 2015
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.
LINKS
J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.
S. R. Finch, Conway's Constant. [Broken link]
S. R. Finch, Conway's Constant. [From the Wayback Machine]
EXAMPLE
The term after 3116 is obtained by saying "one 3, two 1's, one 6", which gives 132116.
MATHEMATICA
RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 6 ][ [ n ] ]; Table[ FromDigits[ F[ n ] ], {n, 1, 11} ] (* Zerinvary Lajos, Mar 21 2007 *)
KEYWORD
nonn,base,easy,nice
STATUS
approved